jjzha commited on
Commit
d47f1ce
·
verified ·
1 Parent(s): 0436e67

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +35 -59
app.py CHANGED
@@ -1,64 +1,40 @@
 
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("NLPnorth/snakmodel-7b-instruct")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
  messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="Du er Snakmodel, skabt af IT-Universitetet i København. Du er en hjælpsom assistent.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
  )
 
61
 
62
-
63
- if __name__ == "__main__":
64
- demo.launch()
 
1
+ from transformers import AutoModelForCausalLM, AutoTokenizer
2
  import gradio as gr
 
3
 
4
+ def chat(prompt):
5
+ messages = [
6
+ {"role": "system", "content": "Du er Snakmodel, skabt af IT-Universitetet i København. Du er en hjælpsom assistent."},
7
+ {"role": "user", "content": prompt}
8
+ ]
9
+ text = tokenizer.apply_chat_template(
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
  messages,
11
+ tokenize=False,
12
+ add_generation_prompt=True
13
+ )
14
+
15
+ model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
16
+
17
+ generated_ids = model.generate(
18
+ **model_inputs,
19
+ max_new_tokens=20
20
+ )
21
+ generated_ids = [
22
+ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
23
+ ]
24
+
25
+ response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
26
+
27
+ return response
28
+
29
+ model_name = "NLPnorth/snakmodel-7b-instruct"
30
+
31
+ model = AutoModelForCausalLM.from_pretrained(
32
+ model_name,
33
+ torch_dtype="auto",
34
+ device_map="auto",
35
+ low_cpu_mem_usage=True,
 
 
 
36
  )
37
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
38
 
39
+ demo = gr.Interface(fn=chat, inputs="text", outputs="text")
40
+ demo.launch()