from transformers import AutoModelForCausalLM, AutoTokenizer import gradio as gr def chat(prompt): messages = [ {"role": "system", "content": "Du er Snakmodel, skabt af IT-Universitetet i København. Du er en hjælpsom assistent."}, {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to(model.device) generated_ids = model.generate( **model_inputs, max_new_tokens=20 ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] return response model_name = "NLPnorth/snakmodel-7b-instruct" model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map="auto", low_cpu_mem_usage=True, ) tokenizer = AutoTokenizer.from_pretrained(model_name) demo = gr.Interface(fn=chat, inputs="text", outputs="text") demo.launch()