Spaces:
Runtime error
Runtime error
import numpy as np | |
import open3d as o3d | |
import open3d as o3d | |
import plotly.express as px | |
import numpy as np | |
import pandas as pd | |
from inference import DepthPredictor | |
import matplotlib.pyplot as plt | |
from mpl_toolkits.mplot3d import Axes3D | |
def create_3d_obj(rgb_image, depth_image, depth=10, path="./image.gltf"): | |
depth_o3d = o3d.geometry.Image(depth_image) | |
image_o3d = o3d.geometry.Image(rgb_image) | |
rgbd_image = o3d.geometry.RGBDImage.create_from_color_and_depth( | |
image_o3d, depth_o3d, convert_rgb_to_intensity=False | |
) | |
w = int(depth_image.shape[1]) | |
h = int(depth_image.shape[0]) | |
camera_intrinsic = o3d.camera.PinholeCameraIntrinsic() | |
camera_intrinsic.set_intrinsics(w, h, 500, 500, w / 2, h / 2) | |
pcd = o3d.geometry.PointCloud.create_from_rgbd_image(rgbd_image, camera_intrinsic) | |
print("normals") | |
pcd.normals = o3d.utility.Vector3dVector( | |
np.zeros((1, 3)) | |
) # invalidate existing normals | |
pcd.estimate_normals( | |
search_param=o3d.geometry.KDTreeSearchParamHybrid(radius=0.01, max_nn=30) | |
) | |
pcd.orient_normals_towards_camera_location( | |
camera_location=np.array([0.0, 0.0, 1000.0]) | |
) | |
pcd.transform([[1, 0, 0, 0], [0, -1, 0, 0], [0, 0, -1, 0], [0, 0, 0, 1]]) | |
pcd.transform([[-1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]]) | |
print("run Poisson surface reconstruction") | |
with o3d.utility.VerbosityContextManager(o3d.utility.VerbosityLevel.Debug) as cm: | |
mesh_raw, densities = o3d.geometry.TriangleMesh.create_from_point_cloud_poisson( | |
pcd, depth=depth, width=0, scale=1.1, linear_fit=True | |
) | |
voxel_size = max(mesh_raw.get_max_bound() - mesh_raw.get_min_bound()) / 256 | |
print(f"voxel_size = {voxel_size:e}") | |
mesh = mesh_raw.simplify_vertex_clustering( | |
voxel_size=voxel_size, | |
contraction=o3d.geometry.SimplificationContraction.Average, | |
) | |
# vertices_to_remove = densities < np.quantile(densities, 0.001) | |
# mesh.remove_vertices_by_mask(vertices_to_remove) | |
bbox = pcd.get_axis_aligned_bounding_box() | |
mesh_crop = mesh.crop(bbox) | |
gltf_path = path | |
o3d.io.write_triangle_mesh(gltf_path, mesh_crop, write_triangle_uvs=True) | |
return gltf_path | |
def create_3d_pc(rgb_image, depth_image, depth=10): | |
depth_image = depth_image.astype(np.float32) # Convert depth map to float32 | |
depth_o3d = o3d.geometry.Image(depth_image) | |
image_o3d = o3d.geometry.Image(rgb_image) | |
rgbd_image = o3d.geometry.RGBDImage.create_from_color_and_depth( | |
image_o3d, depth_o3d, convert_rgb_to_intensity=False | |
) | |
w = int(depth_image.shape[1]) | |
h = int(depth_image.shape[0]) | |
# Specify camera intrinsic parameters (modify based on actual camera) | |
fx = 500 | |
fy = 500 | |
cx = w / 2 | |
cy = h / 2 | |
camera_intrinsic = o3d.camera.PinholeCameraIntrinsic(w, h, fx, fy, cx, cy) | |
pcd = o3d.geometry.PointCloud.create_from_rgbd_image(rgbd_image, camera_intrinsic) | |
print("Estimating normals...") | |
pcd.estimate_normals( | |
search_param=o3d.geometry.KDTreeSearchParamHybrid(radius=0.01, max_nn=30) | |
) | |
pcd.orient_normals_towards_camera_location( | |
camera_location=np.array([0.0, 0.0, 1000.0]) | |
) | |
# Save the point cloud as a PLY file | |
filename = "pc.pcd" | |
o3d.io.write_point_cloud(filename, pcd) | |
return filename # Return the file path where the PLY file is saved | |
def point_cloud(rgb_image): | |
depth_predictor = DepthPredictor() | |
depth_result = depth_predictor.predict(rgb_image) | |
# Step 2: Create an RGBD image from the RGB and depth image | |
depth_o3d = o3d.geometry.Image(depth_image) | |
image_o3d = o3d.geometry.Image(rgb_image) | |
rgbd_image = o3d.geometry.RGBDImage.create_from_color_and_depth( | |
image_o3d, depth_o3d, convert_rgb_to_intensity=False | |
) | |
# Step 3: Create a PointCloud from the RGBD image | |
pcd = o3d.geometry.PointCloud.create_from_rgbd_image( | |
rgbd_image, | |
o3d.camera.PinholeCameraIntrinsic( | |
o3d.camera.PinholeCameraIntrinsicParameters.PrimeSenseDefault | |
), | |
) | |
# Step 4: Convert PointCloud data to a NumPy array | |
points = np.asarray(pcd.points) | |
colors = np.asarray(pcd.colors) | |
# Step 5: Create a DataFrame from the NumPy arrays | |
data = { | |
"x": points[:, 0], | |
"y": points[:, 1], | |
"z": points[:, 2], | |
"red": colors[:, 0], | |
"green": colors[:, 1], | |
"blue": colors[:, 2], | |
} | |
df = pd.DataFrame(data) | |
size = np.zeros(len(df)) | |
size[:] = 0.01 | |
# Step 6: Create a 3D scatter plot using Plotly Express | |
fig = px.scatter_3d(df, x="x", y="y", z="z", color="red", size=size) | |
return fig | |
def array_PCL(rgb_image, depth_image): | |
FX_RGB = 5.1885790117450188e02 | |
FY_RGB = 5.1946961112127485e02 | |
CX_RGB = 3.2558244941119034e0 | |
CY_RGB = 2.5373616633400465e02 | |
FX_DEPTH = FX_RGB | |
FY_DEPTH = FY_RGB | |
CX_DEPTH = CX_RGB | |
CY_DEPTH = CY_RGB | |
height = depth_image.shape[0] | |
width = depth_image.shape[1] | |
# compute indices: | |
jj = np.tile(range(width), height) | |
ii = np.repeat(range(height), width) | |
# Compute constants: | |
xx = (jj - CX_DEPTH) / FX_DEPTH | |
yy = (ii - CY_DEPTH) / FY_DEPTH | |
# transform depth image to vector of z: | |
length = height * width | |
z = depth_image.reshape(length) | |
# compute point cloud | |
pcd = np.dstack((xx * z, yy * z, z)).reshape((length, 3)) | |
# cam_RGB = np.apply_along_axis(np.linalg.inv(R).dot, 1, pcd) - np.linalg.inv(R).dot(T) | |
xx_rgb = ( | |
((rgb_image[:, 0] * FX_RGB) / rgb_image[:, 2] + CX_RGB + width / 2) | |
.astype(int) | |
.clip(0, width - 1) | |
) | |
yy_rgb = ( | |
((rgb_image[:, 1] * FY_RGB) / rgb_image[:, 2] + CY_RGB) | |
.astype(int) | |
.clip(0, height - 1) | |
) | |
# colors = rgb_image[yy_rgb, xx_rgb]/255 | |
return pcd # , colors | |
def generate_PCL(image): | |
depth_predictor = DepthPredictor() | |
depth_result = depth_predictor.predict(image) | |
image = np.array(image) | |
pcd = array_PCL(image, depth_result) | |
fig = px.scatter_3d(x=pcd[:, 0], y=pcd[:, 1], z=pcd[:, 2], size_max=0.01) | |
return fig | |
def plot_PCL(rgb_image, depth_image): | |
pcd, colors = array_PCL(rgb_image, depth_image) | |
fig = px.scatter_3d( | |
x=pcd[:, 0], y=pcd[:, 1], z=pcd[:, 2], color=colors, size_max=0.1 | |
) | |
return fig | |
def PCL3(image): | |
depth_predictor = DepthPredictor() | |
depth_result = depth_predictor.predict(image) | |
image = np.array(image) | |
# Step 2: Create an RGBD image from the RGB and depth image | |
depth_o3d = o3d.geometry.Image(depth_result) | |
image_o3d = o3d.geometry.Image(image) | |
rgbd_image = o3d.geometry.RGBDImage.create_from_color_and_depth( | |
image_o3d, depth_o3d, convert_rgb_to_intensity=False | |
) | |
# Step 3: Create a PointCloud from the RGBD image | |
pcd = o3d.geometry.PointCloud.create_from_rgbd_image( | |
rgbd_image, | |
o3d.camera.PinholeCameraIntrinsic( | |
o3d.camera.PinholeCameraIntrinsicParameters.PrimeSenseDefault | |
), | |
) | |
# Step 4: Convert PointCloud data to a NumPy array | |
vis = o3d.visualization.Visualizer() | |
vis.add_geometry(pcd) | |
# Step 4: Convert PointCloud data to a NumPy array | |
points = np.asarray(pcd.points) | |
colors = np.asarray(pcd.colors) | |
sizes = np.zeros(colors.shape) | |
sizes[:] = 0.01 | |
colors = [tuple(c) for c in colors] | |
fig = plt.figure() | |
# ax = fig.add_subplot(111, projection='3d') | |
ax = Axes3D(fig) | |
print("plotting...") | |
ax.scatter(points[:, 0], points[:, 1], points[:, 2], c=colors, s=0.01) | |
print("Plot Succesful") | |
# data = {'x': points[:, 0], 'y': points[:, 1], 'z': points[:, 2], 'sizes': sizes[:, 0]} | |
# df = pd.DataFrame(data) | |
# Step 6: Create a 3D scatter plot using Plotly Express | |
# fig = px.scatter_3d(df, x='x', y='y', z='z', color=colors, size="sizes") | |
return fig | |
import numpy as np | |