jens
autolinting with black
9f0c4b3
raw
history blame
7.91 kB
import numpy as np
import open3d as o3d
import open3d as o3d
import plotly.express as px
import numpy as np
import pandas as pd
from inference import DepthPredictor
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
def create_3d_obj(rgb_image, depth_image, depth=10, path="./image.gltf"):
depth_o3d = o3d.geometry.Image(depth_image)
image_o3d = o3d.geometry.Image(rgb_image)
rgbd_image = o3d.geometry.RGBDImage.create_from_color_and_depth(
image_o3d, depth_o3d, convert_rgb_to_intensity=False
)
w = int(depth_image.shape[1])
h = int(depth_image.shape[0])
camera_intrinsic = o3d.camera.PinholeCameraIntrinsic()
camera_intrinsic.set_intrinsics(w, h, 500, 500, w / 2, h / 2)
pcd = o3d.geometry.PointCloud.create_from_rgbd_image(rgbd_image, camera_intrinsic)
print("normals")
pcd.normals = o3d.utility.Vector3dVector(
np.zeros((1, 3))
) # invalidate existing normals
pcd.estimate_normals(
search_param=o3d.geometry.KDTreeSearchParamHybrid(radius=0.01, max_nn=30)
)
pcd.orient_normals_towards_camera_location(
camera_location=np.array([0.0, 0.0, 1000.0])
)
pcd.transform([[1, 0, 0, 0], [0, -1, 0, 0], [0, 0, -1, 0], [0, 0, 0, 1]])
pcd.transform([[-1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]])
print("run Poisson surface reconstruction")
with o3d.utility.VerbosityContextManager(o3d.utility.VerbosityLevel.Debug) as cm:
mesh_raw, densities = o3d.geometry.TriangleMesh.create_from_point_cloud_poisson(
pcd, depth=depth, width=0, scale=1.1, linear_fit=True
)
voxel_size = max(mesh_raw.get_max_bound() - mesh_raw.get_min_bound()) / 256
print(f"voxel_size = {voxel_size:e}")
mesh = mesh_raw.simplify_vertex_clustering(
voxel_size=voxel_size,
contraction=o3d.geometry.SimplificationContraction.Average,
)
# vertices_to_remove = densities < np.quantile(densities, 0.001)
# mesh.remove_vertices_by_mask(vertices_to_remove)
bbox = pcd.get_axis_aligned_bounding_box()
mesh_crop = mesh.crop(bbox)
gltf_path = path
o3d.io.write_triangle_mesh(gltf_path, mesh_crop, write_triangle_uvs=True)
return gltf_path
def create_3d_pc(rgb_image, depth_image, depth=10):
depth_image = depth_image.astype(np.float32) # Convert depth map to float32
depth_o3d = o3d.geometry.Image(depth_image)
image_o3d = o3d.geometry.Image(rgb_image)
rgbd_image = o3d.geometry.RGBDImage.create_from_color_and_depth(
image_o3d, depth_o3d, convert_rgb_to_intensity=False
)
w = int(depth_image.shape[1])
h = int(depth_image.shape[0])
# Specify camera intrinsic parameters (modify based on actual camera)
fx = 500
fy = 500
cx = w / 2
cy = h / 2
camera_intrinsic = o3d.camera.PinholeCameraIntrinsic(w, h, fx, fy, cx, cy)
pcd = o3d.geometry.PointCloud.create_from_rgbd_image(rgbd_image, camera_intrinsic)
print("Estimating normals...")
pcd.estimate_normals(
search_param=o3d.geometry.KDTreeSearchParamHybrid(radius=0.01, max_nn=30)
)
pcd.orient_normals_towards_camera_location(
camera_location=np.array([0.0, 0.0, 1000.0])
)
# Save the point cloud as a PLY file
filename = "pc.pcd"
o3d.io.write_point_cloud(filename, pcd)
return filename # Return the file path where the PLY file is saved
def point_cloud(rgb_image):
depth_predictor = DepthPredictor()
depth_result = depth_predictor.predict(rgb_image)
# Step 2: Create an RGBD image from the RGB and depth image
depth_o3d = o3d.geometry.Image(depth_image)
image_o3d = o3d.geometry.Image(rgb_image)
rgbd_image = o3d.geometry.RGBDImage.create_from_color_and_depth(
image_o3d, depth_o3d, convert_rgb_to_intensity=False
)
# Step 3: Create a PointCloud from the RGBD image
pcd = o3d.geometry.PointCloud.create_from_rgbd_image(
rgbd_image,
o3d.camera.PinholeCameraIntrinsic(
o3d.camera.PinholeCameraIntrinsicParameters.PrimeSenseDefault
),
)
# Step 4: Convert PointCloud data to a NumPy array
points = np.asarray(pcd.points)
colors = np.asarray(pcd.colors)
# Step 5: Create a DataFrame from the NumPy arrays
data = {
"x": points[:, 0],
"y": points[:, 1],
"z": points[:, 2],
"red": colors[:, 0],
"green": colors[:, 1],
"blue": colors[:, 2],
}
df = pd.DataFrame(data)
size = np.zeros(len(df))
size[:] = 0.01
# Step 6: Create a 3D scatter plot using Plotly Express
fig = px.scatter_3d(df, x="x", y="y", z="z", color="red", size=size)
return fig
def array_PCL(rgb_image, depth_image):
FX_RGB = 5.1885790117450188e02
FY_RGB = 5.1946961112127485e02
CX_RGB = 3.2558244941119034e0
CY_RGB = 2.5373616633400465e02
FX_DEPTH = FX_RGB
FY_DEPTH = FY_RGB
CX_DEPTH = CX_RGB
CY_DEPTH = CY_RGB
height = depth_image.shape[0]
width = depth_image.shape[1]
# compute indices:
jj = np.tile(range(width), height)
ii = np.repeat(range(height), width)
# Compute constants:
xx = (jj - CX_DEPTH) / FX_DEPTH
yy = (ii - CY_DEPTH) / FY_DEPTH
# transform depth image to vector of z:
length = height * width
z = depth_image.reshape(length)
# compute point cloud
pcd = np.dstack((xx * z, yy * z, z)).reshape((length, 3))
# cam_RGB = np.apply_along_axis(np.linalg.inv(R).dot, 1, pcd) - np.linalg.inv(R).dot(T)
xx_rgb = (
((rgb_image[:, 0] * FX_RGB) / rgb_image[:, 2] + CX_RGB + width / 2)
.astype(int)
.clip(0, width - 1)
)
yy_rgb = (
((rgb_image[:, 1] * FY_RGB) / rgb_image[:, 2] + CY_RGB)
.astype(int)
.clip(0, height - 1)
)
# colors = rgb_image[yy_rgb, xx_rgb]/255
return pcd # , colors
def generate_PCL(image):
depth_predictor = DepthPredictor()
depth_result = depth_predictor.predict(image)
image = np.array(image)
pcd = array_PCL(image, depth_result)
fig = px.scatter_3d(x=pcd[:, 0], y=pcd[:, 1], z=pcd[:, 2], size_max=0.01)
return fig
def plot_PCL(rgb_image, depth_image):
pcd, colors = array_PCL(rgb_image, depth_image)
fig = px.scatter_3d(
x=pcd[:, 0], y=pcd[:, 1], z=pcd[:, 2], color=colors, size_max=0.1
)
return fig
def PCL3(image):
depth_predictor = DepthPredictor()
depth_result = depth_predictor.predict(image)
image = np.array(image)
# Step 2: Create an RGBD image from the RGB and depth image
depth_o3d = o3d.geometry.Image(depth_result)
image_o3d = o3d.geometry.Image(image)
rgbd_image = o3d.geometry.RGBDImage.create_from_color_and_depth(
image_o3d, depth_o3d, convert_rgb_to_intensity=False
)
# Step 3: Create a PointCloud from the RGBD image
pcd = o3d.geometry.PointCloud.create_from_rgbd_image(
rgbd_image,
o3d.camera.PinholeCameraIntrinsic(
o3d.camera.PinholeCameraIntrinsicParameters.PrimeSenseDefault
),
)
# Step 4: Convert PointCloud data to a NumPy array
vis = o3d.visualization.Visualizer()
vis.add_geometry(pcd)
# Step 4: Convert PointCloud data to a NumPy array
points = np.asarray(pcd.points)
colors = np.asarray(pcd.colors)
sizes = np.zeros(colors.shape)
sizes[:] = 0.01
colors = [tuple(c) for c in colors]
fig = plt.figure()
# ax = fig.add_subplot(111, projection='3d')
ax = Axes3D(fig)
print("plotting...")
ax.scatter(points[:, 0], points[:, 1], points[:, 2], c=colors, s=0.01)
print("Plot Succesful")
# data = {'x': points[:, 0], 'y': points[:, 1], 'z': points[:, 2], 'sizes': sizes[:, 0]}
# df = pd.DataFrame(data)
# Step 6: Create a 3D scatter plot using Plotly Express
# fig = px.scatter_3d(df, x='x', y='y', z='z', color=colors, size="sizes")
return fig
import numpy as np