Spaces:
Runtime error
Runtime error
jens
commited on
Commit
·
9780d7b
1
Parent(s):
1d564b4
fix
Browse files- app.py +2 -3
- inference.py +19 -17
app.py
CHANGED
@@ -7,16 +7,15 @@ from inference import DepthPredictor, SegmentPredictor
|
|
7 |
|
8 |
def snap(image, video):
|
9 |
depth_predictor = DepthPredictor()
|
|
|
10 |
#segment_predictor = SegmentPredictor()
|
11 |
#sam_result = segment_predictor.predict(image)
|
12 |
-
depth_result = depth_predictor.predict(image)
|
13 |
-
|
14 |
return [depth_result, video]
|
15 |
|
16 |
|
17 |
demo = gr.Interface(
|
18 |
snap,
|
19 |
-
[gr.Image(source="webcam", tool=None), gr.Video(source="webcam")],
|
20 |
["image", "video"],
|
21 |
)
|
22 |
|
|
|
7 |
|
8 |
def snap(image, video):
|
9 |
depth_predictor = DepthPredictor()
|
10 |
+
depth_result = depth_predictor.predict(image)
|
11 |
#segment_predictor = SegmentPredictor()
|
12 |
#sam_result = segment_predictor.predict(image)
|
|
|
|
|
13 |
return [depth_result, video]
|
14 |
|
15 |
|
16 |
demo = gr.Interface(
|
17 |
snap,
|
18 |
+
[gr.Image(source="webcam", tool=None, type="pil"), gr.Video(source="webcam")],
|
19 |
["image", "video"],
|
20 |
)
|
21 |
|
inference.py
CHANGED
@@ -10,30 +10,32 @@ import requests
|
|
10 |
class DepthPredictor:
|
11 |
def __init__(self):
|
12 |
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
13 |
-
self.
|
14 |
self.model = DPTForDepthEstimation.from_pretrained("Intel/dpt-large")
|
15 |
self.model.eval()
|
16 |
|
17 |
def predict(self, image):
|
18 |
# prepare image for the model
|
19 |
-
|
|
|
|
|
20 |
with torch.no_grad():
|
21 |
-
outputs = self.model(**
|
22 |
predicted_depth = outputs.predicted_depth
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
|
38 |
|
39 |
|
|
|
10 |
class DepthPredictor:
|
11 |
def __init__(self):
|
12 |
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
13 |
+
self.feature_extractor = DPTImageProcessor.from_pretrained("Intel/dpt-large")
|
14 |
self.model = DPTForDepthEstimation.from_pretrained("Intel/dpt-large")
|
15 |
self.model.eval()
|
16 |
|
17 |
def predict(self, image):
|
18 |
# prepare image for the model
|
19 |
+
encoding = self.feature_extractor(image, return_tensors="pt")
|
20 |
+
|
21 |
+
# forward pass
|
22 |
with torch.no_grad():
|
23 |
+
outputs = self.model(**encoding)
|
24 |
predicted_depth = outputs.predicted_depth
|
25 |
+
|
26 |
+
# interpolate to original size
|
27 |
+
prediction = torch.nn.functional.interpolate(
|
28 |
+
predicted_depth.unsqueeze(1),
|
29 |
+
size=image.size[::-1],
|
30 |
+
mode="bicubic",
|
31 |
+
align_corners=False,
|
32 |
+
).squeeze()
|
33 |
+
|
34 |
+
output = prediction.cpu().numpy()
|
35 |
+
formatted = (output * 255 / np.max(output)).astype('uint8')
|
36 |
+
img = Image.fromarray(formatted)
|
37 |
+
return img
|
38 |
+
|
39 |
|
40 |
|
41 |
|