from transformers import DPTImageProcessor, DPTForDepthEstimation from segment_anything import SamAutomaticMaskGenerator, sam_model_registry, SamPredictor import gradio as gr import supervision as sv import torch import numpy as np from PIL import Image import requests import open3d as o3d import pandas as pd import plotly.express as px import matplotlib.pyplot as plt def remove_outliers(point_cloud, threshold=3.0): # Calculate mean and standard deviation along each dimension mean = np.mean(point_cloud, axis=0) std = np.std(point_cloud, axis=0) # Define lower and upper bounds for each dimension lower_bounds = mean - threshold * std upper_bounds = mean + threshold * std # Create a boolean mask for points within the bounds mask = np.all((point_cloud >= lower_bounds) & (point_cloud <= upper_bounds), axis=1) # Filter out outlier points filtered_point_cloud = point_cloud[mask] return filtered_point_cloud def map_image_range(depth, min_value, max_value): """ Maps the values of a numpy image array to a specified range. Args: image (numpy.ndarray): Input image array with values ranging from 0 to 1. min_value (float): Minimum value of the new range. max_value (float): Maximum value of the new range. Returns: numpy.ndarray: Image array with values mapped to the specified range. """ # Ensure the input image is a numpy array print(np.min(depth)) print(np.max(depth)) depth = np.array(depth) # map the depth values are between 0 and 1 depth = (depth - depth.min()) / (depth.max() - depth.min()) # invert depth = 1 - depth print(np.min(depth)) print(np.max(depth)) # Map the values to the specified range mapped_image = (depth - 0) * (max_value - min_value) / (1 - 0) + min_value print(np.min(mapped_image)) print(np.max(mapped_image)) return mapped_image def PCL(mask, depth): assert mask.shape == depth.shape assert type(mask) == np.ndarray assert type(depth) == np.ndarray rgb_mask = np.zeros((mask.shape[0], mask.shape[1], 3)).astype("uint8") rgb_mask[mask] = (255, 0, 0) print(np.unique(rgb_mask)) depth_o3d = o3d.geometry.Image(depth) image_o3d = o3d.geometry.Image(rgb_mask) # print(len(depth_o3d)) # print(len(image_o3d)) rgbd_image = o3d.geometry.RGBDImage.create_from_color_and_depth( image_o3d, depth_o3d, convert_rgb_to_intensity=False ) # Step 3: Create a PointCloud from the RGBD image pcd = o3d.geometry.PointCloud.create_from_rgbd_image( rgbd_image, o3d.camera.PinholeCameraIntrinsic( o3d.camera.PinholeCameraIntrinsicParameters.PrimeSenseDefault ), ) # Step 4: Convert PointCloud data to a NumPy array # print(len(pcd)) points = np.asarray(pcd.points) colors = np.asarray(pcd.colors) print(np.unique(colors, axis=0)) print(np.unique(colors, axis=1)) print(np.unique(colors)) mask = colors[:, 0] == 1.0 print(mask.sum()) print(colors.shape) points = points[mask] colors = colors[mask] return points, colors def PCL_rgb(rgb, depth): # assert rgb.shape == depth.shape assert type(rgb) == np.ndarray assert type(depth) == np.ndarray depth_o3d = o3d.geometry.Image(depth) image_o3d = o3d.geometry.Image(rgb) rgbd_image = o3d.geometry.RGBDImage.create_from_color_and_depth( image_o3d, depth_o3d, convert_rgb_to_intensity=False ) # Step 3: Create a PointCloud from the RGBD image pcd = o3d.geometry.PointCloud.create_from_rgbd_image( rgbd_image, o3d.camera.PinholeCameraIntrinsic( o3d.camera.PinholeCameraIntrinsicParameters.PrimeSenseDefault ), ) # Step 4: Convert PointCloud data to a NumPy array points = np.asarray(pcd.points) colors = np.asarray(pcd.colors) return points, colors class DepthPredictor: def __init__(self): self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") self.feature_extractor = DPTImageProcessor.from_pretrained("Intel/dpt-large") self.model = DPTForDepthEstimation.from_pretrained("Intel/dpt-large") self.model.eval() def predict(self, image): # prepare image for the model encoding = self.feature_extractor(image, return_tensors="pt") # forward pass with torch.no_grad(): outputs = self.model(**encoding) predicted_depth = outputs.predicted_depth # interpolate to original size prediction = torch.nn.functional.interpolate( predicted_depth.unsqueeze(1), size=image.size[::-1], mode="bicubic", align_corners=False, ).squeeze() output = prediction.cpu().numpy() # output = 1 - (output/np.max(output)) return output def generate_pcl(self, image): print(np.array(image).shape) depth = self.predict(image) print(depth.shape) # Step 2: Create an RGBD image from the RGB and depth image depth_o3d = o3d.geometry.Image(depth) image_o3d = o3d.geometry.Image(np.array(image)) rgbd_image = o3d.geometry.RGBDImage.create_from_color_and_depth( image_o3d, depth_o3d, convert_rgb_to_intensity=False ) # Step 3: Create a PointCloud from the RGBD image pcd = o3d.geometry.PointCloud.create_from_rgbd_image( rgbd_image, o3d.camera.PinholeCameraIntrinsic( o3d.camera.PinholeCameraIntrinsicParameters.PrimeSenseDefault ), ) # Step 4: Convert PointCloud data to a NumPy array points = np.asarray(pcd.points) colors = np.asarray(pcd.colors) print(points.shape, colors.shape) return points, colors def generate_fig(self, image): points, colors = self.generate_pcl(image) data = { "x": points[:, 0], "y": points[:, 1], "z": points[:, 2], "red": colors[:, 0], "green": colors[:, 1], "blue": colors[:, 2], } df = pd.DataFrame(data) size = np.zeros(len(df)) size[:] = 0.01 # Step 6: Create a 3D scatter plot using Plotly Express fig = px.scatter_3d(df, x="x", y="y", z="z", color="red", size=size) return fig def generate_fig2(self, image): points, colors = self.generate_pcl(image) # Step 6: Create a 3D scatter plot using Plotly Express fig = plt.figure() ax = fig.add_subplot(111, projection="3d") ax.scatter(points, size=0.01, c=colors, marker="o") return fig def generate_obj_rgb(self, image, n_samples, cube_size, max_depth, min_depth): # Step 1: Create a point cloud depth = self.predict(image) image = np.array(image) depth = map_image_range(depth, min_depth, max_depth) point_cloud, color_array = PCL_rgb(image, depth) idxs = np.random.choice(len(point_cloud), int(n_samples)) point_cloud = point_cloud[idxs] color_array = color_array[idxs] # Create a mesh to hold the colored cubes mesh = o3d.geometry.TriangleMesh() # Create cubes and add them to the mesh for point, color in zip(point_cloud, color_array): cube = o3d.geometry.TriangleMesh.create_box( width=cube_size, height=cube_size, depth=cube_size ) cube.translate(-point) cube.paint_uniform_color(color) mesh += cube # Save the mesh to an .obj file output_file = "./cloud.obj" o3d.io.write_triangle_mesh(output_file, mesh) return output_file def generate_obj_masks(self, image, n_samples, masks, cube_size): # Generate a point cloud point_cloud, color_array = self.generate_pcl(image) print(point_cloud.shape) mesh = o3d.geometry.TriangleMesh() # Create cubes and add them to the mesh cs = [(255, 0, 0), (0, 255, 0), (0, 0, 255)] for c, (mask, _) in zip(cs, masks): mask = mask.ravel() point_cloud_subset, color_array_subset = ( point_cloud[mask], color_array[mask], ) idxs = np.random.choice(len(point_cloud_subset), int(n_samples)) point_cloud_subset = point_cloud_subset[idxs] for point in point_cloud_subset: cube = o3d.geometry.TriangleMesh.create_box( width=cube_size, height=cube_size, depth=cube_size ) cube.translate(-point) cube.paint_uniform_color(c) mesh += cube # Save the mesh to an .obj file output_file = "./cloud.obj" o3d.io.write_triangle_mesh(output_file, mesh) return output_file def generate_obj_masks2( self, image, masks, cube_size, n_samples, min_depth, max_depth ): # Generate a point cloud depth = self.predict(image) depth = map_image_range(depth, min_depth, max_depth) image = np.array(image) mesh = o3d.geometry.TriangleMesh() # Create cubes and add them to the mesh print(len(masks)) cs = [(1, 0, 0), (0, 1, 0), (0, 0, 1)] for c, (mask, _) in zip(cs, masks): points, _ = PCL(mask, depth) idxs = np.random.choice(len(points), int(n_samples)) points = points[idxs] points = remove_outliers(points) for point in points: cube = o3d.geometry.TriangleMesh.create_box( width=cube_size, height=cube_size, depth=cube_size ) cube.translate(-point) cube.paint_uniform_color(c) mesh += cube # Save the mesh to an .obj file output_file = "./cloud.obj" o3d.io.write_triangle_mesh(output_file, mesh) return output_file import numpy as np from typing import Optional, Tuple class CustomSamPredictor(SamPredictor): def __init__( self, sam_model, ) -> None: super().__init__(sam_model) def encode_image( self, image: np.ndarray, image_format: str = "RGB", ) -> None: """ Calculates the image embeddings for the provided image, allowing masks to be predicted with the 'predict' method. Arguments: image (np.ndarray): The image for calculating masks. Expects an image in HWC uint8 format, with pixel values in [0, 255]. image_format (str): The color format of the image, in ['RGB', 'BGR']. """ assert image_format in [ "RGB", "BGR", ], f"image_format must be in ['RGB', 'BGR'], is {image_format}." if image_format != self.model.image_format: image = image[..., ::-1] # Transform the image to the form expected by the model input_image = self.transform.apply_image(image) input_image_torch = torch.as_tensor(input_image, device=self.device) input_image_torch = input_image_torch.permute(2, 0, 1).contiguous()[ None, :, :, : ] self.set_torch_image(input_image_torch, image.shape[:2]) return self.get_image_embedding() def decode_and_predict( self, embedding: torch.Tensor, point_coords: Optional[np.ndarray] = None, point_labels: Optional[np.ndarray] = None, box: Optional[np.ndarray] = None, mask_input: Optional[np.ndarray] = None, multimask_output: bool = True, return_logits: bool = False, ) -> Tuple[np.ndarray, np.ndarray, np.ndarray]: """ Decodes the provided image embedding and makes mask predictions based on prompts. Arguments: embedding (torch.Tensor): The image embedding to decode. ... (other arguments from the predict function) Returns: (np.ndarray): The output masks in CxHxW format. (np.ndarray): An array of quality predictions for each mask. (np.ndarray): Low resolution mask logits for subsequent iterations. """ self.features = embedding self.is_image_set = True return self.predict( point_coords=point_coords, point_labels=point_labels, box=box, mask_input=mask_input, multimask_output=multimask_output, return_logits=return_logits, ) def dummy_set_torch_image( self, transformed_image: torch.Tensor, original_image_size: Tuple[int, ...], ) -> None: """ Calculates the image embeddings for the provided image, allowing masks to be predicted with the 'predict' method. Expects the input image to be already transformed to the format expected by the model. Arguments: transformed_image (torch.Tensor): The input image, with shape 1x3xHxW, which has been transformed with ResizeLongestSide. original_image_size (tuple(int, int)): The size of the image before transformation, in (H, W) format. """ assert ( len(transformed_image.shape) == 4 and transformed_image.shape[1] == 3 and max(*transformed_image.shape[2:]) == self.model.image_encoder.img_size ), f"set_torch_image input must be BCHW with long side {self.model.image_encoder.img_size}." self.reset_image() self.original_size = original_image_size self.input_size = tuple(transformed_image.shape[-2:]) input_image = self.model.preprocess(transformed_image) # The following line is commented out to avoid encoding on cpu # self.features = self.model.image_encoder(input_image) self.is_image_set = True def dummy_set_image( self, image: np.ndarray, image_format: str = "RGB", ) -> None: """ Calculates the image embeddings for the provided image, allowing masks to be predicted with the 'predict' method. Arguments: image (np.ndarray): The image for calculating masks. Expects an image in HWC uint8 format, with pixel values in [0, 255]. image_format (str): The color format of the image, in ['RGB', 'BGR']. """ assert image_format in [ "RGB", "BGR", ], f"image_format must be in ['RGB', 'BGR'], is {image_format}." if image_format != self.model.image_format: image = image[..., ::-1] # Transform the image to the form expected by the model input_image = self.transform.apply_image(image) input_image_torch = torch.as_tensor(input_image, device=self.device) input_image_torch = input_image_torch.permute(2, 0, 1).contiguous()[ None, :, :, : ] self.dummy_set_torch_image(input_image_torch, image.shape[:2]) class SegmentPredictor: def __init__(self, device=None): MODEL_TYPE = "vit_h" checkpoint = "sam_vit_h_4b8939.pth" sam = sam_model_registry[MODEL_TYPE](checkpoint=checkpoint) # Select device if device is None: self.device = "cuda" if torch.cuda.is_available() else "cpu" else: self.device = device sam.to(device=self.device) self.mask_generator = SamAutomaticMaskGenerator(sam) self.conditioned_pred = CustomSamPredictor(sam) def encode(self, image): image = np.array(image) return self.conditioned_pred.encode_image(image) def dummy_encode(self, image): image = np.array(image) self.conditioned_pred.dummy_set_image(image) def cond_pred(self, embedding, pts, lbls): lbls = np.array(lbls) pts = np.array(pts) masks, _, _ = self.conditioned_pred.decode_and_predict( embedding, point_coords=pts, point_labels=lbls, multimask_output=True ) idxs = np.argsort(-masks.sum(axis=(1, 2))) sam_masks = [] for n, i in enumerate(idxs): sam_masks.append((masks[i], str(n))) return sam_masks def segment_everything(self, image): image = np.array(image) sam_result = self.mask_generator.generate(image) sam_masks = [] for i, mask in enumerate(sam_result): sam_masks.append((mask["segmentation"], str(i))) return sam_masks