|
import logging
|
|
import os
|
|
import subprocess
|
|
import sys
|
|
from dataclasses import dataclass
|
|
from pathlib import Path
|
|
from typing import Optional, Tuple
|
|
from urllib.request import urlopen, urlretrieve
|
|
|
|
import streamlit as st
|
|
from huggingface_hub import HfApi, whoami
|
|
|
|
logging.basicConfig(level=logging.INFO)
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
@dataclass
|
|
class Config:
|
|
"""Application configuration."""
|
|
|
|
hf_token: str
|
|
hf_username: str
|
|
transformers_version: str = "3.0.0"
|
|
hf_base_url: str = "https://huggingface.co"
|
|
transformers_base_url: str = (
|
|
"https://github.com/xenova/transformers.js/archive/refs"
|
|
)
|
|
repo_path: Path = Path("./transformers.js")
|
|
|
|
@classmethod
|
|
def from_env(cls) -> "Config":
|
|
"""Create config from environment variables and secrets."""
|
|
system_token = st.secrets.get("HF_TOKEN")
|
|
user_token = st.session_state.get("user_hf_token")
|
|
if user_token:
|
|
hf_username = whoami(token=user_token)["name"]
|
|
else:
|
|
hf_username = (
|
|
os.getenv("SPACE_AUTHOR_NAME") or whoami(token=system_token)["name"]
|
|
)
|
|
hf_token = user_token or system_token
|
|
|
|
if not hf_token:
|
|
raise ValueError("HF_TOKEN must be set")
|
|
|
|
return cls(hf_token=hf_token, hf_username=hf_username)
|
|
|
|
|
|
class ModelConverter:
|
|
"""Handles model conversion and upload operations."""
|
|
|
|
def __init__(self, config: Config):
|
|
self.config = config
|
|
self.api = HfApi(token=config.hf_token)
|
|
|
|
def _get_ref_type(self) -> str:
|
|
"""Determine the reference type for the transformers repository."""
|
|
url = f"{self.config.transformers_base_url}/tags/{self.config.transformers_version}.tar.gz"
|
|
try:
|
|
return "tags" if urlopen(url).getcode() == 200 else "heads"
|
|
except Exception as e:
|
|
logger.warning(f"Failed to check tags, defaulting to heads: {e}")
|
|
return "heads"
|
|
|
|
def setup_repository(self) -> None:
|
|
"""Download and setup transformers repository if needed."""
|
|
if self.config.repo_path.exists():
|
|
return
|
|
|
|
ref_type = self._get_ref_type()
|
|
archive_url = f"{self.config.transformers_base_url}/{ref_type}/{self.config.transformers_version}.tar.gz"
|
|
archive_path = Path(f"./transformers_{self.config.transformers_version}.tar.gz")
|
|
|
|
try:
|
|
urlretrieve(archive_url, archive_path)
|
|
self._extract_archive(archive_path)
|
|
logger.info("Repository downloaded and extracted successfully")
|
|
except Exception as e:
|
|
raise RuntimeError(f"Failed to setup repository: {e}")
|
|
finally:
|
|
archive_path.unlink(missing_ok=True)
|
|
|
|
def _extract_archive(self, archive_path: Path) -> None:
|
|
"""Extract the downloaded archive."""
|
|
import tarfile
|
|
import tempfile
|
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
with tarfile.open(archive_path, "r:gz") as tar:
|
|
tar.extractall(tmp_dir)
|
|
|
|
extracted_folder = next(Path(tmp_dir).iterdir())
|
|
extracted_folder.rename(self.config.repo_path)
|
|
|
|
def convert_model(self, input_model_id: str) -> Tuple[bool, Optional[str]]:
|
|
"""Convert the model to ONNX format."""
|
|
try:
|
|
result = subprocess.run(
|
|
[
|
|
sys.executable,
|
|
"-m",
|
|
"scripts.convert",
|
|
"--quantize",
|
|
"--model_id",
|
|
input_model_id,
|
|
],
|
|
cwd=self.config.repo_path,
|
|
capture_output=True,
|
|
text=True,
|
|
env={},
|
|
)
|
|
|
|
if result.returncode != 0:
|
|
return False, result.stderr
|
|
|
|
return True, result.stderr
|
|
|
|
except Exception as e:
|
|
return False, str(e)
|
|
|
|
def upload_model(self, input_model_id: str, output_model_id: str) -> Optional[str]:
|
|
"""Upload the converted model to Hugging Face."""
|
|
try:
|
|
self.api.create_repo(output_model_id, exist_ok=True, private=False)
|
|
model_folder_path = self.config.repo_path / "models" / input_model_id
|
|
|
|
self.api.upload_folder(
|
|
folder_path=str(model_folder_path), repo_id=output_model_id
|
|
)
|
|
return None
|
|
except Exception as e:
|
|
return str(e)
|
|
finally:
|
|
import shutil
|
|
|
|
shutil.rmtree(model_folder_path, ignore_errors=True)
|
|
|
|
|
|
def main():
|
|
"""Main application entry point."""
|
|
st.write("## Convert a Hugging Face model to ONNX")
|
|
|
|
try:
|
|
config = Config.from_env()
|
|
converter = ModelConverter(config)
|
|
converter.setup_repository()
|
|
|
|
input_model_id = st.text_input(
|
|
"Enter the Hugging Face model ID to convert. Example: `EleutherAI/pythia-14m`"
|
|
)
|
|
|
|
if not input_model_id:
|
|
return
|
|
|
|
st.text_input(
|
|
f"Optional: Your Hugging Face write token. Fill it if you want to upload the model under your account.",
|
|
type="password",
|
|
key="user_hf_token",
|
|
)
|
|
|
|
model_name = input_model_id.split("/")[-1]
|
|
output_model_id = f"{config.hf_username}/{model_name}-ONNX"
|
|
output_model_url = f"{config.hf_base_url}/{output_model_id}"
|
|
|
|
if converter.api.repo_exists(output_model_id):
|
|
st.write("This model has already been converted! 🎉")
|
|
st.link_button(f"Go to {output_model_id}", output_model_url, type="primary")
|
|
return
|
|
|
|
st.write(f"URL where the model will be converted and uploaded to:")
|
|
st.code(output_model_url, language="plaintext")
|
|
|
|
if not st.button(label="Proceed", type="primary"):
|
|
return
|
|
|
|
with st.spinner("Converting model..."):
|
|
success, stderr = converter.convert_model(input_model_id)
|
|
if not success:
|
|
st.error(f"Conversion failed: {stderr}")
|
|
return
|
|
|
|
st.success("Conversion successful!")
|
|
st.code(stderr)
|
|
|
|
with st.spinner("Uploading model..."):
|
|
error = converter.upload_model(input_model_id, output_model_id)
|
|
if error:
|
|
st.error(f"Upload failed: {error}")
|
|
return
|
|
|
|
st.success("Upload successful!")
|
|
st.write("You can now go and view the model on Hugging Face!")
|
|
st.link_button(f"Go to {output_model_id}", output_model_url, type="primary")
|
|
|
|
except Exception as e:
|
|
logger.exception("Application error")
|
|
st.error(f"An error occurred: {str(e)}")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main() |