Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,130 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import time
|
2 |
+
import gradio as gr
|
3 |
+
import pandas as pd
|
4 |
+
import numpy as np
|
5 |
+
import matplotlib.pyplot as plt
|
6 |
+
|
7 |
+
from sklearn import linear_model
|
8 |
+
from sklearn.datasets import fetch_openml
|
9 |
+
from sklearn.model_selection import train_test_split
|
10 |
+
from sklearn.utils._testing import ignore_warnings
|
11 |
+
from sklearn.exceptions import ConvergenceWarning
|
12 |
+
from sklearn.utils import shuffle
|
13 |
+
|
14 |
+
|
15 |
+
def load_mnist(classes, n_samples):
|
16 |
+
"""Load MNIST, select two classes, shuffle and return only n_samples."""
|
17 |
+
# Load data from http://openml.org/d/554
|
18 |
+
mnist = fetch_openml("mnist_784", version=1, as_frame=False, parser="pandas")
|
19 |
+
|
20 |
+
# take only two classes for binary classification
|
21 |
+
mask = np.in1d(mnist.target, classes)
|
22 |
+
|
23 |
+
X, y = shuffle(mnist.data[mask], mnist.target[mask], random_state=42)
|
24 |
+
X, y = X[:n_samples], y[:n_samples]
|
25 |
+
return X, y
|
26 |
+
|
27 |
+
|
28 |
+
@ignore_warnings(category=ConvergenceWarning)
|
29 |
+
def fit_and_score(estimator, max_iter, X_train, X_test, y_train, y_test):
|
30 |
+
"""Fit the estimator on the train set and score it on both sets"""
|
31 |
+
estimator.set_params(max_iter=max_iter)
|
32 |
+
estimator.set_params(random_state=0)
|
33 |
+
|
34 |
+
start = time.time()
|
35 |
+
estimator.fit(X_train, y_train)
|
36 |
+
|
37 |
+
fit_time = time.time() - start
|
38 |
+
n_iter = estimator.n_iter_
|
39 |
+
train_score = estimator.score(X_train, y_train)
|
40 |
+
test_score = estimator.score(X_test, y_test)
|
41 |
+
|
42 |
+
return fit_time, n_iter, train_score, test_score
|
43 |
+
|
44 |
+
def plot(classes, max_iterations, num_samples, n_iter_no_change, validation_fraction, tol):
|
45 |
+
if len(classes) <2:
|
46 |
+
raise gr.Error(f'Invalid number of classes (Numbers to be included in training)')
|
47 |
+
max_iterations = int(max_iterations)
|
48 |
+
num_samples = int(num_samples)
|
49 |
+
n_iter_no_change = int(n_iter_no_change)
|
50 |
+
validation_fraction = float(validation_fraction)
|
51 |
+
tol = float(tol)
|
52 |
+
# Define the estimators to compare
|
53 |
+
estimator_dict = {
|
54 |
+
"No stopping criterion": linear_model.SGDClassifier(n_iter_no_change=n_iter_no_change),
|
55 |
+
"Training loss": linear_model.SGDClassifier(
|
56 |
+
early_stopping=False, n_iter_no_change=n_iter_no_change, tol=0.1
|
57 |
+
),
|
58 |
+
"Validation score": linear_model.SGDClassifier(
|
59 |
+
early_stopping=True, n_iter_no_change=n_iter_no_change, tol=tol, validation_fraction=validation_fraction
|
60 |
+
),
|
61 |
+
}
|
62 |
+
|
63 |
+
# Load the dataset
|
64 |
+
X, y = load_mnist(classes, n_samples=num_samples)
|
65 |
+
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5, random_state=0)
|
66 |
+
|
67 |
+
results = []
|
68 |
+
for estimator_name, estimator in estimator_dict.items():
|
69 |
+
for max_iter in range(1, max_iterations):
|
70 |
+
|
71 |
+
fit_time, n_iter, train_score, test_score = fit_and_score(
|
72 |
+
estimator, max_iter, X_train, X_test, y_train, y_test
|
73 |
+
)
|
74 |
+
|
75 |
+
results.append(
|
76 |
+
(estimator_name, max_iter, fit_time, n_iter, train_score, test_score)
|
77 |
+
)
|
78 |
+
|
79 |
+
# Transform the results in a pandas dataframe for easy plotting
|
80 |
+
columns = [
|
81 |
+
"Stopping criterion",
|
82 |
+
"max_iter",
|
83 |
+
"Fit time (sec)",
|
84 |
+
"n_iter_",
|
85 |
+
"Train score",
|
86 |
+
"Test score",
|
87 |
+
]
|
88 |
+
results_df = pd.DataFrame(results, columns=columns)
|
89 |
+
|
90 |
+
# Define what to plot
|
91 |
+
lines = "Stopping criterion"
|
92 |
+
x_axis = "max_iter"
|
93 |
+
styles = ["-.", "--", "-"]
|
94 |
+
|
95 |
+
# First plot: train and test scores
|
96 |
+
fig1, axes1 = plt.subplots(nrows=1, ncols=2, sharey=True, figsize=(12, 4))
|
97 |
+
for ax, y_axis in zip(axes1, ["Train score", "Test score"]):
|
98 |
+
for style, (criterion, group_df) in zip(styles, results_df.groupby(lines)):
|
99 |
+
group_df.plot(x=x_axis, y=y_axis, label=criterion, ax=ax, style=style)
|
100 |
+
ax.set_title(y_axis)
|
101 |
+
ax.legend(title=lines)
|
102 |
+
fig1.tight_layout()
|
103 |
+
|
104 |
+
# Second plot: n_iter and fit time
|
105 |
+
fig2, axes2 = plt.subplots(nrows=1, ncols=2, figsize=(12, 4))
|
106 |
+
for ax, y_axis in zip(axes2, ["n_iter_", "Fit time (sec)"]):
|
107 |
+
for style, (criterion, group_df) in zip(styles, results_df.groupby(lines)):
|
108 |
+
group_df.plot(x=x_axis, y=y_axis, label=criterion, ax=ax, style=style)
|
109 |
+
ax.set_title(y_axis)
|
110 |
+
ax.legend(title=lines)
|
111 |
+
fig2.tight_layout()
|
112 |
+
|
113 |
+
return fig1, fig2
|
114 |
+
|
115 |
+
with gr.Blocks() as demo:
|
116 |
+
gr.Markdown(info)
|
117 |
+
with gr.Row():
|
118 |
+
with gr.Column():
|
119 |
+
classes = gr.CheckboxGroup(["0", "1", "2","3","4","5","6","7","8","9"], value=['0','8'],label="Classes", info="Numbers to include in the training, for fast and stable training please choose 2 classes only")
|
120 |
+
max_iterations = gr.Slider(label="Max Number of Iterations", value="50", minimum=5, maximum=50, step=1, info="Max Number of iterations to run SGD")
|
121 |
+
num_samples = gr.Slider(label="Number of Samples", value="10000", minimum=1000, maximum=70000, step=100, info="Number of samples to include in the training")
|
122 |
+
n_iter_no_change = gr.Slider(label="Number of Iterations with No Change", value="3", minimum=1, maximum=10, step=1, info="Maximum number of iterations with no score improvement by at leat tol, before stopping")
|
123 |
+
validation_fraction = gr.Slider(label="Validation Fraction", value="0.2", minimum=0.05, maximum=0.9, step=0.01, info="Fraction of the training data to be used for validation")
|
124 |
+
tol = gr.Textbox(label='Stopping Criterion', value="0.0001",info="The minimum improvement of score to be considered")
|
125 |
+
out1 = gr.Plot()
|
126 |
+
out2 = gr.Plot()
|
127 |
+
|
128 |
+
btn = gr.Button("Run")
|
129 |
+
btn.click(fn=plot, inputs=[classes, max_iterations, num_samples, n_iter_no_change, validation_fraction, tol], outputs=[out1, out2])
|
130 |
+
demo.launch()
|