Update app.py
Browse files
app.py
CHANGED
@@ -48,7 +48,7 @@ def plot(classes, max_iterations, num_samples, n_iter_no_change, validation_frac
|
|
48 |
num_samples = int(num_samples)
|
49 |
n_iter_no_change = int(n_iter_no_change)
|
50 |
validation_fraction = float(validation_fraction)
|
51 |
-
tol = float(tol)
|
52 |
# Define the estimators to compare
|
53 |
estimator_dict = {
|
54 |
"No stopping criterion": linear_model.SGDClassifier(n_iter_no_change=n_iter_no_change),
|
@@ -126,7 +126,7 @@ with gr.Blocks() as demo:
|
|
126 |
num_samples = gr.Slider(label="Number of Samples", value="10000", minimum=1000, maximum=70000, step=100, info="Number of samples to include in the training")
|
127 |
n_iter_no_change = gr.Slider(label="Number of Iterations with No Change", value="3", minimum=1, maximum=10, step=1, info="Maximum number of iterations with no score improvement by at leat tol, before stopping")
|
128 |
validation_fraction = gr.Slider(label="Validation Fraction", value="0.2", minimum=0.05, maximum=0.9, step=0.01, info="Fraction of the training data to be used for validation")
|
129 |
-
tol = gr.
|
130 |
btn = gr.Button("Plot")
|
131 |
out1 = gr.Plot()
|
132 |
out2 = gr.Plot()
|
|
|
48 |
num_samples = int(num_samples)
|
49 |
n_iter_no_change = int(n_iter_no_change)
|
50 |
validation_fraction = float(validation_fraction)
|
51 |
+
#tol = float(tol)
|
52 |
# Define the estimators to compare
|
53 |
estimator_dict = {
|
54 |
"No stopping criterion": linear_model.SGDClassifier(n_iter_no_change=n_iter_no_change),
|
|
|
126 |
num_samples = gr.Slider(label="Number of Samples", value="10000", minimum=1000, maximum=70000, step=100, info="Number of samples to include in the training")
|
127 |
n_iter_no_change = gr.Slider(label="Number of Iterations with No Change", value="3", minimum=1, maximum=10, step=1, info="Maximum number of iterations with no score improvement by at leat tol, before stopping")
|
128 |
validation_fraction = gr.Slider(label="Validation Fraction", value="0.2", minimum=0.05, maximum=0.9, step=0.01, info="Fraction of the training data to be used for validation")
|
129 |
+
tol = gr.Slider(label='Stopping Criterion', value=0.0001,minimum=0.00001, maximum=0.01, step=0.00001,info="The minimum improvement of score to be considered")
|
130 |
btn = gr.Button("Plot")
|
131 |
out1 = gr.Plot()
|
132 |
out2 = gr.Plot()
|