Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
import pandas as pd
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
from sklearn import linear_model
|
6 |
+
|
7 |
+
def plot(seed, num_points):
|
8 |
+
# Error handling of non-numeric seeds
|
9 |
+
if seed and not seed.isnumeric():
|
10 |
+
raise gr.Error("Invalid seed")
|
11 |
+
|
12 |
+
# Setting the seed
|
13 |
+
if seed:
|
14 |
+
seed = int(seed)
|
15 |
+
np.random.seed(seed)
|
16 |
+
num_points = int(num_points)
|
17 |
+
|
18 |
+
#Ensuring the number of points is even
|
19 |
+
if num_points%2 != 0:
|
20 |
+
num_points +=1
|
21 |
+
half_num_points = int(num_points/2)
|
22 |
+
|
23 |
+
X = np.r_[np.random.randn(half_num_points, 2) + [1, 1], np.random.randn(half_num_points, 2)]
|
24 |
+
y = [1] * half_num_points + [-1] * half_num_points
|
25 |
+
sample_weight = 100 * np.abs(np.random.randn(num_points))
|
26 |
+
# and assign a bigger weight to the last 10 samples
|
27 |
+
sample_weight[:half_num_points] *= 10
|
28 |
+
|
29 |
+
# plot the weighted data points
|
30 |
+
xx, yy = np.meshgrid(np.linspace(-4, 5, 500), np.linspace(-4, 5, 500))
|
31 |
+
fig, ax = plt.subplots()
|
32 |
+
ax.scatter(
|
33 |
+
X[:, 0],
|
34 |
+
X[:, 1],
|
35 |
+
c=y,
|
36 |
+
s=sample_weight,
|
37 |
+
alpha=0.9,
|
38 |
+
cmap=plt.cm.bone,
|
39 |
+
edgecolor="black",
|
40 |
+
)
|
41 |
+
|
42 |
+
# fit the unweighted model
|
43 |
+
clf = linear_model.SGDClassifier(alpha=0.01, max_iter=100)
|
44 |
+
clf.fit(X, y)
|
45 |
+
Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()])
|
46 |
+
Z = Z.reshape(xx.shape)
|
47 |
+
no_weights = ax.contour(xx, yy, Z, levels=[0], linestyles=["solid"])
|
48 |
+
|
49 |
+
# fit the weighted model
|
50 |
+
clf = linear_model.SGDClassifier(alpha=0.01, max_iter=100)
|
51 |
+
clf.fit(X, y, sample_weight=sample_weight)
|
52 |
+
Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()])
|
53 |
+
Z = Z.reshape(xx.shape)
|
54 |
+
samples_weights = ax.contour(xx, yy, Z, levels=[0], linestyles=["dashed"])
|
55 |
+
|
56 |
+
no_weights_handles, _ = no_weights.legend_elements()
|
57 |
+
weights_handles, _ = samples_weights.legend_elements()
|
58 |
+
ax.legend(
|
59 |
+
[no_weights_handles[0], weights_handles[0]],
|
60 |
+
["no weights", "with weights"],
|
61 |
+
loc="lower left",
|
62 |
+
)
|
63 |
+
|
64 |
+
ax.set(xticks=(), yticks=())
|
65 |
+
return fig
|
66 |
+
|
67 |
+
info = ''' # SGD: Weighted samples\n
|
68 |
+
This is a demonstration of a modified version of [SGD](https://scikit-learn.org/stable/modules/sgd.html#id5) that takes into account the weights of the samples. Where the size of points is proportional to its weight.\n
|
69 |
+
Created by [@Nahrawy](https://huggingface.co/Nahrawy) based on [scikit-learn docs](https://scikit-learn.org/stable/auto_examples/linear_model/plot_sgd_weighted_samples.html).
|
70 |
+
'''
|
71 |
+
|
72 |
+
with gr.Blocks() as demo:
|
73 |
+
gr.Markdown(info)
|
74 |
+
with gr.Row():
|
75 |
+
with gr.Column():
|
76 |
+
seed = gr.Textbox(label="Seed", info="Leave empty to generate new random points each run ",value=None)
|
77 |
+
num_points = gr.Slider(label="Number of Points", value="20", minimum=5, maximum=100, step=2)
|
78 |
+
btn = gr.Button("Run")
|
79 |
+
out = gr.Plot()
|
80 |
+
btn.click(fn=plot, inputs=[seed,num_points] , outputs=out)
|
81 |
+
demo.launch()
|