import streamlit as st import pickle import numpy as np pipe = pickle.load(open('pipe.pkl','rb')) df = pickle.load(open('df.pkl','rb')) st.title("Laptop Price Predictor") company = st.selectbox('Brand',df['Company'].unique()) type = st.selectbox('Type',df['TypeName'].unique()) ram = st.selectbox('RAM(in GB)',[2,4,6,8,12,16,24,32,64]) weight = st.number_input('Weight of the Laptop ') touchscreen = st.selectbox('Touchscreen',['No','Yes']) ips = st.selectbox('IPS',['No','Yes']) screen_size = st.number_input('Screen Size') resolution = st.selectbox('Screen Resolution',['1920x1080','1366x768','1600x900','3840x2160','3200x1800','2880x1800','2560x1600','2560x1440','2304x1440']) cpu = st.selectbox('CPU',df['Cpu brand'].unique()) hdd = st.selectbox('HDD(in GB)',[0,128,256,512,1024,2048]) ssd = st.selectbox('SSD(in GB)',[0,8,128,256,512,1024]) gpu = st.selectbox('GPU',df['Gpu Brand'].unique()) os = st.selectbox('OS',df['OS_Brand'].unique()) if st.button('Predict Price'): ppi = None if touchscreen == 'Yes': touchscreen = 1 else: touchscreen = 0 if ips == 'Yes': ips = 1 else: ips = 0 X_res = int(resolution.split('x')[0]) Y_res = int(resolution.split('x')[1]) ppi = ((X_res**2) + (Y_res**2))**0.5/screen_size query = np.array([company,type,ram,weight,touchscreen,ips,ppi,cpu,hdd,ssd,gpu,os]) query = query.reshape(1,12) st.title("The predicted Price of this Configuration is Rs." + str(int(np.exp(pipe.predict(query)[0]))))