File size: 23,444 Bytes
f308e29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8d3cc25
f308e29
 
135cfdb
f308e29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
import os
import streamlit as st
import subprocess
import replicate
import openai
import requests
from PIL import Image

import tempfile
import base64
from dotenv import load_dotenv
from io import BytesIO  
from openai import OpenAI
import re

load_dotenv()
OpenAI.api_key = os.getenv("OPENAI_API_KEY")
if not OpenAI.api_key:     
    raise ValueError("The OpenAI API key must be set in the OPENAI_API_KEY environment variable.")
client = OpenAI()


def execute_ffmpeg_command(command):
    try:
        result = subprocess.run(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
        if result.returncode == 0:
            print("FFmpeg command executed successfully.")
            return result.stdout, result.stderr
        else:
            print("Error executing FFmpeg command:")
            return None, result.stderr
    except Exception as e:
        print("An error occurred during FFmpeg execution:")
        return None, str(e)


def execute_fmpeg_command(command):
    try:
        result = subprocess.run(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, check=True)
        return result.stdout  # Return just the stdout part, not a tuple
    except subprocess.CalledProcessError as e:
        print(f"FFmpeg command failed with error: {e.stderr.decode()}")
        return None

def search_keyword(keyword, frame_texts):
    return [index for index, text in st.session_state.frame_texts.items() if keyword.lower() in text.lower()]
frame_numbers = []
# Function to generate description for video frames

def generate_description(base64_frames):
    try:
        prompt_messages = [
            {
                "role": "user",
                "content": [ " Find the most interesting / impactful portions of a video.  The output will be targeted towards social media (like TikTok or Reels) or to news broadcasts. For the provided  frames return the most interesting / impactful frames that will hold the interest of an audience and also describe why you chose it. I am trying to fill these frames for a TikTok video. Hence while selecting the frames keep that in mind. You do not have to give me the script of the Tiktok vfideo. Just return the most interesting frames in a sequence that will come for a 10 second tiktok video. List all frame numbers separated by commas at the end like this for eg, Frames : 1,2,4,7,9",
                    *map(lambda x: {"image": x, "resize": 428}, base64_frames),
                ],
            },
        ]
        response = client.chat.completions.create(
            model="gpt-4-vision-preview",
            messages=prompt_messages,
            max_tokens=3000,
        )
        description = response.choices[0].message.content

        # Use regular expression to find frame numbers
        frame_numbers = re.findall(r'Frames\s*:\s*(\d+(?:,\s*\d+)*)', response.choices[0].message.content)

        # Convert the string of numbers into a list of integers
        if frame_numbers:
            frame_numbers = [int(num) for num in frame_numbers[0].split(',')]
        else:
            frame_numbers = []

        print("Frame numbers to extract:", frame_numbers)

        return description, frame_numbers
    
    except Exception as e:
        print(f"Error in generate_description: {e}")
        return None, []

def generate_video(prompt, num_frames):
    # Run the text-to-video generation job
    output = replicate.run(
        "cjwbw/damo-text-to-video:1e205ea73084bd17a0a3b43396e49ba0d6bc2e754e9283b2df49fad2dcf95755",
        input={"prompt": prompt, "num_frames": num_frames}
    )
    # Print the output URL
    st.success(f"Video generation successful! Output URL: {output}")
    return output


def overlay_text(video_path, dynamic_text, text_effect):
    # Define the text filter based on the selected effect
    if text_effect == "Vertical scroll":
        text_filter = f"drawtext=text='{dynamic_text}':fontsize=24:fontfile=Opensans.ttf:fontcolor=white:box=1:[email protected]:boxborderw=5:x=(w-text_w)/2:y='if(lt(mod(t,10),5*(n-1)/10),(h-text_h)/2+((h+text_h)/10)*mod(t,5), (h-text_h)/2+((h+text_h)/10)*(1-(mod(t,10)/10)))':enable='between(t,0,10*(n-1)/10)"
    elif text_effect == "typing":
        text_filter = f"drawtext=text='{dynamic_text}':subtitles=typewriter.ass:force_style='FontName=Ubuntu Mono,FontSize=100,PrimaryColour=&H00FFFFFF&'"
    elif text_effect == "Horizontal scroll":
        text_filter = f"drawtext=text='{dynamic_text}':fontsize=24:fontfile=OpenSans-Regular.ttf:fontcolor=white:box=1:[email protected]:boxborderw=5:x=(w-text_w)/2:y=(h-text_h)/2:enable='between(t,0,10*(n-1)/10)':x='if(lt(t,10*(n-1)/10),(w-text_w)/2-((w+text_w)/10)*mod(t,10),NAN)'"
    else:
        # Handle the case where none of the conditions are met
        print("Invalid text effect selected.")
        return None

    # Print the FFmpeg command
    ffmpeg_command = [
        "ffmpeg", "-i", "uploaded_video.mp4",
        "-vf", text_filter,
        "-c:a", "copy", "-y", "text_overlay_video.mp4"
    ]
    print("FFmpeg Command:", " ".join(ffmpeg_command))

    # Run FFmpeg command to overlay text onto the video with the selected effect
    result = subprocess.run(ffmpeg_command, capture_output=True, text=True)

    # Check if the process was successful
    if result.returncode == 0:
        # Print the standard output of the command
        print("FFmpeg output:", result.stdout)
    else:
        # Print error message if the process failed
        print("Error running FFmpeg command:", result.stderr)
        return None

# Example usage
overlay_text("input_video.mp4", "Dynamic Text", "Vertical scroll")

def text_to_video_section():
    # Set your Replicate API token
    apikey=os.environ["REPLICATE_API_TOKEN"] 
    st.title("Text-to-Video Generation")

    # Input prompt from user
    prompt = st.text_input("Enter your prompt:", "batman riding a horse")

    # Number of frames input from user
    num_frames = st.slider("Select number of frames:", min_value=1, max_value=100, value=50)

    # Button to trigger text-to-video generation
    if st.button("Generate Video"):
        video_path = generate_video(prompt, num_frames)
        st.video(video_path)

    # Input field for dynamic text
    dynamic_text = st.text_input("Enter dynamic text:", "Your dynamic text here")

    # Dropdown for selecting text effects
    text_effects = ["None", "Vertical scroll", "Typing", "Horizontal scroll"]
    selected_effect = st.selectbox("Select text effect:", text_effects)

    # Button to overlay text onto the video
    if st.button("Add Text"):
        if not os.path.exists("uploaded_video.mp4"):
            st.error("Please upload a video first.")
        else:
            if selected_effect != "None":
                # Convert selected effect to lowercase
                selected_effect_lower = selected_effect.lower()
                result_video = overlay_text("uploaded_video.mp4", dynamic_text, selected_effect_lower)
                if result_video:
                    st.video(result_video)
            else:
                st.error("Please select a text effect.")


def extract_keywords(article):

    prompt = f"Read the article provided below ,pick out the 5 important keywords ,add .jpg at the end of the keywords. Do not provide any additional text or explanations. Article: {article}"

    completions =  client.chat.completions.create(
        model="gpt-4-1106-preview",
        messages=[

    {"role": "user", "content": prompt}
  ],
        max_tokens=200,
        n=1,
        stop=None,
        temperature=0.0,
    )

    # Extract keywords from the OpenAI response
    keywords =completions.choices[0].message.content
    return keywords

def fetch_images(query):
    api_key = os.getenv("serp_key")  # Replace "YOUR_API_KEY" with your actual API key
    endpoint = f"https://serpapi.com/search?engine=google_images&q={query}&api_key={api_key}"
    
    try:
        response = requests.get(endpoint)
        data = response.json()
        print("API Response:", data)
        image_urls = [result['original'] for result in data['images_results']]
        return image_urls[:10]  # Return only the first 5 images
    except Exception as e:
        st.error(f"Error fetching images: {e}")
        return []


def resize_images(image_files):
    resized_image_files = []
    for image_file in image_files:
        try:
            with Image.open(image_file) as img:
                # Convert image to RGB mode if it has an alpha channel
                if img.mode == 'RGBA':
                    img = img.convert('RGB')
                # Ensure width and height are divisible by 2
                width = img.width - (img.width % 2)
                height = img.height - (img.height % 2)
                resized_img = img.resize((width, height))
                resized_image_file = f"{image_file.split('.')[0]}_resized.jpg"
                resized_img.save(resized_image_file)
                resized_image_files.append(resized_image_file)
        except (OSError) as e:
            st.warning(f"Skipping image {image_file} as it cannot be identified.")
            continue
    return resized_image_files



def create_video_slideshow(image_urls):
    # Create temporary directory to store image files
    temp_dir = "temp_images"
    os.makedirs(temp_dir, exist_ok=True)

    # Download and save images
    image_files = []
    for i, image_url in enumerate(image_urls):
        image_path = os.path.join(temp_dir, f"image_{i}.jpg")
        with open(image_path, 'wb') as f:
            response = requests.get(image_url)
            f.write(response.content)
        image_files.append(image_path)

    # Resize images
    resized_image_files = resize_images(image_files)

    # Run FFmpeg command to create video slideshow
    output_video_path = "slideshow_video.mp4"
    subprocess.run([
        "ffmpeg", "-y", "-framerate", "1", "-i", os.path.join(temp_dir, "image_%d.jpg"), '-c:v', 'libx264','-r', '30',
        output_video_path
    ])

    # Cleanup temporary directory
    for image_file in image_files:
        os.remove(image_file)
    for resized_image_file in resized_image_files:
        os.remove(resized_image_file)
    os.rmdir(temp_dir)

    return output_video_path

def add_text_to_video(input_video_path, output_video_path, text_input, text_animation):
    # Define text animation filter based on dropdown selection
    if text_animation == "fade_in_out":
        text_animation_filter = f"drawtext=text='{text_input}':fontsize=24:fontcolor=darkslategray:fontfile=Opensans.ttf:box=1:[email protected]:boxborderw=5:x=w+tw-55*t:y=h-line_h-20:enable='between(t,0,10*(n-1)/10)':x='if(lt(t,10*(n-1)/10),(w-text_w)/2+(w/10)*mod(t,10),NAN)', drawtext=textfile=latest.txt:fontsize=24:fontcolor=white:fontfile=Opensans.ttf:y=h-line_h-20:x=13:box=1:boxcolor=darkorange:boxborderw=8'"
    elif text_animation == "slide_from_left":
        text_animation_filter = "split[text][tmp];[tmp]crop=w='min(iw\\,iw*max(1,(iw/2-2*t)/iw)):h='min(ih\\,ih*max(1,(ih/2-2*t)/ih)):x=-100+t*300:y=0[tleft];[text]crop=w='min(iw\\,iw*max(1,(iw/2-2*t)/iw)):h='min(ih\\,ih*max(1,(ih/2-2*t)/ih)):x=100-t*300:y=0[tright];[tmp][tleft]overlay=x='min(0,-100+t*300)':y=0[tmp];[tmp][tright]overlay=x='min(0,100-t*300)':y=0"
    else:
        text_animation_filter = ""  # No animation

       # Check if text_input is empty or text_animation is "None"
    if not text_input or text_animation == "None":
        # Return the input video path without any modifications
        return input_video_path
     
    print("text filter:",text_animation_filter)
    # Run ffmpeg command to overlay text onto the video with animation
    cmd = [
        "ffmpeg","-y",
        "-i", input_video_path,
        "-vf", text_animation_filter,
        "-c:a", "copy",
        output_video_path
    ]
    print(" ".join(cmd))
    subprocess.run(cmd)
    return output_video_path

def image_to_video_section():
    st.title("Image-to-Video Generation")

    # Multi-input box for entering the article
    article = st.text_area("Enter the article:", "Your article here")
    
    # Define video filter options
    video_filter_options=["None","Vintage warm","Grayscale","Invert","Sepia"]
    # Add text overlay options outside of the button block
    text_input = st.text_input("Enter text to overlay")
    text_animation_options = ["None", "fade_in_out", "Horizontal scroll"]
    text_animation = st.selectbox("Select text animation", text_animation_options)
    print("text applied:",text_input)

    # Select video filter
    video_filter = st.selectbox("Select video filter", video_filter_options)
    
    # Button to trigger keyword extraction and video generation
    if st.button("Generate Video"):
        if article.strip() != "":
            # Extract keywords using OpenAI API
            keywords = extract_keywords(article)
            st.write(keywords)

            # Fetch images from Google Images based on keywords
            image_urls = fetch_images(" ".join(keywords.split()[:10]))  # Fetch images based on the first 5 keywords
            if image_urls:
                st.success("Images fetched successfully!")
                
                # Display the first 5 images
                for image_url in image_urls:
                    st.image(image_url, caption='Image from Google', use_column_width=True)
                
                # Create video slideshow from fetched images
                video_path = create_video_slideshow(image_urls)
                
                # Display generated video
                st.video(video_path)
                
                #video filter
                if video_filter=="Vintage warm":
                    video_filt="eq=brightness=0.05:saturation=1.5"
                elif video_filter=="Grayscale":
                    video_filt="hue=s=0"
                elif video_filter=="Invert":
                    video_filt="lutrgb='r=negval:g=negval:b=negval'"
                elif video_filter=="Sepia":
                    video_filt="colorchannelmixer=.393:.769:.189:0:.349:.686:.168:0:.272:.534:.131"
                else:
                    video_filt="" #no filter
                
                if not video_filter=="None":
                    cmdvid=["ffmpeg","-y","-i", video_path,"-vf",video_filt,"-c:a", "copy","videofilter.mp4"]
                    print(" ".join(cmdvid))
                    subprocess.run(cmdvid)
                    st.video("videofilter.mp4")




                #text filter
                if text_animation == "fade_in_out":

                    text_animation_filter = f"drawtext=text='{text_input}':fontsize=24:fontcolor=darkslategray:fontfile=Opensans.ttf:box=1:[email protected]:boxborderw=5:x=w+tw-55*t:y=h-line_h-20:enable='between(t,0,10*(n-1)/10)':x='if(lt(t,10*(n-1)/10),(w-text_w)/2+(w/10)*mod(t,10),NAN)', drawtext=textfile=latest.txt:fontsize=24:fontcolor=white:fontfile=Opensans.ttf:y=h-line_h-20:x=13:box=1:boxcolor=darkorange:boxborderw=8'"

                elif text_animation == "Horizontal scroll":
                    text_animation_filter =f"drawtext=text='{text_input}':fontsize=24:fontcolor=darkslategray:fontfile=Opensans.ttf:box=1:[email protected]:boxborderw=5:x=w+tw-55*t:y=h-line_h-20:enable='between(t,0,10*(n-1)/10)':x='if(lt(t,10*(n-1)/10),(w-text_w)/2+(w/10)*mod(t,10),NAN)', drawtext=textfile=latest.txt:fontsize=24:fontcolor=white:fontfile=Opensans.ttf:y=h-line_h-20:x=13:box=1:boxcolor=darkorange:boxborderw=8'"
                else:
                    text_animation_filter = ""  # No animation

                # Check if text_input is empty or text_animation is "None"
                if not text_input or text_animation == "None":
                    # Return the input video path without any modifications
                    return video_path
                
                print("text filter:",text_animation_filter)
                # Run ffmpeg command to overlay text onto the video with animation
                cmd = [
                    "ffmpeg","-y",
                    "-i", video_path,
                    "-vf", text_animation_filter,
                    "-c:a", "copy",
                    "output_video.mp4"
                ]
                print(" ".join(cmd))
                subprocess.run(cmd)
                #return output_video_path
                # Add text overlay to the generated video
                
            st.video("output_video.mp4")
        else:
            st.error("No images found for the given keywords.")
    else:
        st.warning("Please enter an article before generating the video.")


def frame_extraction():
    st.title("Insightly Video")
 #   stream_url = st.text_input("Enter the live stream URL (YouTube, Twitch, etc.):")
 #   keyword = st.text_input("Enter a keyword to filter the frames (optional):")
    uploaded_video = st.file_uploader("Or upload a video file (MP4):", type=["mp4"])
    


    # Slider to select the number of seconds for extraction
    seconds = st.slider("Select the number of seconds for extraction:", min_value=1, max_value=60, value=10)

    extract_frames_button = st.button("Extract Frames")

    if uploaded_video is not None and extract_frames_button:
        with tempfile.NamedTemporaryFile(delete=False, suffix=".mp4") as tmpfile:
            tmpfile.write(uploaded_video.getvalue())
            video_file_path = tmpfile.name

            ffmpeg_command = [
                'ffmpeg',          # Input stream URL
                '-i', video_file_path, 
                '-t', str(seconds),          # Duration to process the input (selected seconds)
                '-vf', 'fps=1',             # Extract one frame per second
                '-f', 'image2pipe',         # Output format as image2pipe
                '-c:v', 'mjpeg',            # Codec for output video
                '-an',                      # No audio
                '-'
            ]

            ffmpeg_output = execute_fmpeg_command(ffmpeg_command)

            if ffmpeg_output:
                st.write("Frames Extracted:")
                frame_bytes_list = ffmpeg_output.split(b'\xff\xd8')[1:]  # Correct splitting for JPEG frames
                n_frames = len(frame_bytes_list)
                base64_frames = [base64.b64encode(b'\xff\xd8' + frame_bytes).decode('utf-8') for frame_bytes in frame_bytes_list]

                frame_dict = {}

                for idx, frame_base64 in enumerate(base64_frames):
                        col1, col2 = st.columns([3, 2])
                        with col1:
                            frame_bytes = base64.b64decode(frame_base64)
                            frame_dict[idx + 1] = frame_bytes
                            st.image(Image.open(BytesIO(frame_bytes)), caption=f'Frame {idx + 1}', use_column_width=True)
                        with col2:
                            pass

                # Here, you might want to process combined_analysis_results to summarize or just display them

            # Extract audio
            audio_command = [
                'ffmpeg',
                '-i', video_file_path,  
                '-t', str(seconds), 
                '-vf', 'fps=1',         # Input stream URL
                '-vn',                      # Ignore the video for the audio output
                '-acodec', 'libmp3lame',    # Set the audio codec to MP3        # Duration for the audio extraction (selected seconds)
                '-f', 'mp3',                # Output format as MP3
                '-'
            ]
            audio_output, _ = execute_ffmpeg_command(audio_command)

            st.write("Extracted Audio:")
            audio_tempfile = tempfile.NamedTemporaryFile(delete=False, suffix=".mp3")
            audio_tempfile.write(audio_output)
            audio_tempfile.close()

            st.audio(audio_output, format='audio/mpeg', start_time=0)

                # Get consolidated description for all frames
            if ffmpeg_output:
                description, frame_numbers = generate_description(base64_frames)
                if description:
                    st.header("Frame Description:")
                    st.write(description)
                else:
                    st.write("Failed to generate description.")

            if frame_numbers:
                print("Frame numbers to extract:", frame_numbers)  # Check frame numbers

                # Create a mapping from original frame numbers to sequential numbers
                frame_mapping = {}
                new_frame_numbers = []
                for idx, frame_number in enumerate(sorted(frame_numbers)):
                    frame_mapping[frame_number] = idx + 1
                    new_frame_numbers.append(idx + 1)

                print("New frame numbers:", new_frame_numbers)
                print("Frame mapping:", frame_mapping)

                # Create a temporary directory to store images
                with tempfile.TemporaryDirectory() as temp_dir:
                    image_paths = []
                    for frame_number in frame_numbers:
                        if frame_number in frame_dict:
                            frame_path = os.path.join(temp_dir, f'frame_{frame_mapping[frame_number]:03}.jpg')  # Updated file naming
                            image_paths.append(frame_path)
                            with open(frame_path, 'wb') as f:
                                f.write(frame_dict[frame_number])

                    # Once all selected frames are saved as images, create a video from them using FFmpeg
                    video_output_path = os.path.join(temp_dir, 'output.mp4')
                    framerate = 1  # Adjust framerate based on the number of frames
                    ffmpeg_command = [
                        'ffmpeg',
                        '-framerate', str(framerate),  # Set framerate based on the number of frames
                        '-i', os.path.join(temp_dir, 'frame_%03d.jpg'),  # Input pattern for all frame files
                        '-c:v', 'libx264',
                        '-pix_fmt', 'yuv420p',
                        video_output_path
                    ]

                    print("FFmpeg command:", ' '.join(ffmpeg_command))  # Debug FFmpeg command

                    subprocess.run(ffmpeg_command, stdout=subprocess.PIPE, stderr=subprocess.PIPE)

                    # Display or provide a download link for the created video
                    st.header("Final Video")
                    st.video(video_output_path)

    else:
        st.write(" ") 

def main():
  #  st.title("Video Uploader and Player")

  #  uploaded_file = st.file_uploader("Upload a video", type=["mp4", "mov"])

  #  if uploaded_file is not None:
        # Save the uploaded video to disk
  #      with open("uploaded_video.mp4", "wb") as f:
  #          f.write(uploaded_file.getbuffer())

  #      st.success("Video uploaded successfully!")

        # Display the uploaded video
   #     st.video("uploaded_video.mp4")

    # Add accordion menu for text to video and image to video sections
    menu_selection = st.sidebar.selectbox("Select:", ["Text to video", "Image to video","Frame Extraction"])

    if menu_selection == "Text to video":
        text_to_video_section()
    elif menu_selection == "Image to video":
        image_to_video_section()
    elif menu_selection == "Frame Extraction":
        frame_extraction()

if __name__ == "__main__":
    main()