Spaces:
Runtime error
Runtime error
File size: 23,444 Bytes
f308e29 8d3cc25 f308e29 135cfdb f308e29 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 |
import os
import streamlit as st
import subprocess
import replicate
import openai
import requests
from PIL import Image
import tempfile
import base64
from dotenv import load_dotenv
from io import BytesIO
from openai import OpenAI
import re
load_dotenv()
OpenAI.api_key = os.getenv("OPENAI_API_KEY")
if not OpenAI.api_key:
raise ValueError("The OpenAI API key must be set in the OPENAI_API_KEY environment variable.")
client = OpenAI()
def execute_ffmpeg_command(command):
try:
result = subprocess.run(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
if result.returncode == 0:
print("FFmpeg command executed successfully.")
return result.stdout, result.stderr
else:
print("Error executing FFmpeg command:")
return None, result.stderr
except Exception as e:
print("An error occurred during FFmpeg execution:")
return None, str(e)
def execute_fmpeg_command(command):
try:
result = subprocess.run(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, check=True)
return result.stdout # Return just the stdout part, not a tuple
except subprocess.CalledProcessError as e:
print(f"FFmpeg command failed with error: {e.stderr.decode()}")
return None
def search_keyword(keyword, frame_texts):
return [index for index, text in st.session_state.frame_texts.items() if keyword.lower() in text.lower()]
frame_numbers = []
# Function to generate description for video frames
def generate_description(base64_frames):
try:
prompt_messages = [
{
"role": "user",
"content": [ " Find the most interesting / impactful portions of a video. The output will be targeted towards social media (like TikTok or Reels) or to news broadcasts. For the provided frames return the most interesting / impactful frames that will hold the interest of an audience and also describe why you chose it. I am trying to fill these frames for a TikTok video. Hence while selecting the frames keep that in mind. You do not have to give me the script of the Tiktok vfideo. Just return the most interesting frames in a sequence that will come for a 10 second tiktok video. List all frame numbers separated by commas at the end like this for eg, Frames : 1,2,4,7,9",
*map(lambda x: {"image": x, "resize": 428}, base64_frames),
],
},
]
response = client.chat.completions.create(
model="gpt-4-vision-preview",
messages=prompt_messages,
max_tokens=3000,
)
description = response.choices[0].message.content
# Use regular expression to find frame numbers
frame_numbers = re.findall(r'Frames\s*:\s*(\d+(?:,\s*\d+)*)', response.choices[0].message.content)
# Convert the string of numbers into a list of integers
if frame_numbers:
frame_numbers = [int(num) for num in frame_numbers[0].split(',')]
else:
frame_numbers = []
print("Frame numbers to extract:", frame_numbers)
return description, frame_numbers
except Exception as e:
print(f"Error in generate_description: {e}")
return None, []
def generate_video(prompt, num_frames):
# Run the text-to-video generation job
output = replicate.run(
"cjwbw/damo-text-to-video:1e205ea73084bd17a0a3b43396e49ba0d6bc2e754e9283b2df49fad2dcf95755",
input={"prompt": prompt, "num_frames": num_frames}
)
# Print the output URL
st.success(f"Video generation successful! Output URL: {output}")
return output
def overlay_text(video_path, dynamic_text, text_effect):
# Define the text filter based on the selected effect
if text_effect == "Vertical scroll":
text_filter = f"drawtext=text='{dynamic_text}':fontsize=24:fontfile=Opensans.ttf:fontcolor=white:box=1:[email protected]:boxborderw=5:x=(w-text_w)/2:y='if(lt(mod(t,10),5*(n-1)/10),(h-text_h)/2+((h+text_h)/10)*mod(t,5), (h-text_h)/2+((h+text_h)/10)*(1-(mod(t,10)/10)))':enable='between(t,0,10*(n-1)/10)"
elif text_effect == "typing":
text_filter = f"drawtext=text='{dynamic_text}':subtitles=typewriter.ass:force_style='FontName=Ubuntu Mono,FontSize=100,PrimaryColour=&H00FFFFFF&'"
elif text_effect == "Horizontal scroll":
text_filter = f"drawtext=text='{dynamic_text}':fontsize=24:fontfile=OpenSans-Regular.ttf:fontcolor=white:box=1:[email protected]:boxborderw=5:x=(w-text_w)/2:y=(h-text_h)/2:enable='between(t,0,10*(n-1)/10)':x='if(lt(t,10*(n-1)/10),(w-text_w)/2-((w+text_w)/10)*mod(t,10),NAN)'"
else:
# Handle the case where none of the conditions are met
print("Invalid text effect selected.")
return None
# Print the FFmpeg command
ffmpeg_command = [
"ffmpeg", "-i", "uploaded_video.mp4",
"-vf", text_filter,
"-c:a", "copy", "-y", "text_overlay_video.mp4"
]
print("FFmpeg Command:", " ".join(ffmpeg_command))
# Run FFmpeg command to overlay text onto the video with the selected effect
result = subprocess.run(ffmpeg_command, capture_output=True, text=True)
# Check if the process was successful
if result.returncode == 0:
# Print the standard output of the command
print("FFmpeg output:", result.stdout)
else:
# Print error message if the process failed
print("Error running FFmpeg command:", result.stderr)
return None
# Example usage
overlay_text("input_video.mp4", "Dynamic Text", "Vertical scroll")
def text_to_video_section():
# Set your Replicate API token
apikey=os.environ["REPLICATE_API_TOKEN"]
st.title("Text-to-Video Generation")
# Input prompt from user
prompt = st.text_input("Enter your prompt:", "batman riding a horse")
# Number of frames input from user
num_frames = st.slider("Select number of frames:", min_value=1, max_value=100, value=50)
# Button to trigger text-to-video generation
if st.button("Generate Video"):
video_path = generate_video(prompt, num_frames)
st.video(video_path)
# Input field for dynamic text
dynamic_text = st.text_input("Enter dynamic text:", "Your dynamic text here")
# Dropdown for selecting text effects
text_effects = ["None", "Vertical scroll", "Typing", "Horizontal scroll"]
selected_effect = st.selectbox("Select text effect:", text_effects)
# Button to overlay text onto the video
if st.button("Add Text"):
if not os.path.exists("uploaded_video.mp4"):
st.error("Please upload a video first.")
else:
if selected_effect != "None":
# Convert selected effect to lowercase
selected_effect_lower = selected_effect.lower()
result_video = overlay_text("uploaded_video.mp4", dynamic_text, selected_effect_lower)
if result_video:
st.video(result_video)
else:
st.error("Please select a text effect.")
def extract_keywords(article):
prompt = f"Read the article provided below ,pick out the 5 important keywords ,add .jpg at the end of the keywords. Do not provide any additional text or explanations. Article: {article}"
completions = client.chat.completions.create(
model="gpt-4-1106-preview",
messages=[
{"role": "user", "content": prompt}
],
max_tokens=200,
n=1,
stop=None,
temperature=0.0,
)
# Extract keywords from the OpenAI response
keywords =completions.choices[0].message.content
return keywords
def fetch_images(query):
api_key = os.getenv("serp_key") # Replace "YOUR_API_KEY" with your actual API key
endpoint = f"https://serpapi.com/search?engine=google_images&q={query}&api_key={api_key}"
try:
response = requests.get(endpoint)
data = response.json()
print("API Response:", data)
image_urls = [result['original'] for result in data['images_results']]
return image_urls[:10] # Return only the first 5 images
except Exception as e:
st.error(f"Error fetching images: {e}")
return []
def resize_images(image_files):
resized_image_files = []
for image_file in image_files:
try:
with Image.open(image_file) as img:
# Convert image to RGB mode if it has an alpha channel
if img.mode == 'RGBA':
img = img.convert('RGB')
# Ensure width and height are divisible by 2
width = img.width - (img.width % 2)
height = img.height - (img.height % 2)
resized_img = img.resize((width, height))
resized_image_file = f"{image_file.split('.')[0]}_resized.jpg"
resized_img.save(resized_image_file)
resized_image_files.append(resized_image_file)
except (OSError) as e:
st.warning(f"Skipping image {image_file} as it cannot be identified.")
continue
return resized_image_files
def create_video_slideshow(image_urls):
# Create temporary directory to store image files
temp_dir = "temp_images"
os.makedirs(temp_dir, exist_ok=True)
# Download and save images
image_files = []
for i, image_url in enumerate(image_urls):
image_path = os.path.join(temp_dir, f"image_{i}.jpg")
with open(image_path, 'wb') as f:
response = requests.get(image_url)
f.write(response.content)
image_files.append(image_path)
# Resize images
resized_image_files = resize_images(image_files)
# Run FFmpeg command to create video slideshow
output_video_path = "slideshow_video.mp4"
subprocess.run([
"ffmpeg", "-y", "-framerate", "1", "-i", os.path.join(temp_dir, "image_%d.jpg"), '-c:v', 'libx264','-r', '30',
output_video_path
])
# Cleanup temporary directory
for image_file in image_files:
os.remove(image_file)
for resized_image_file in resized_image_files:
os.remove(resized_image_file)
os.rmdir(temp_dir)
return output_video_path
def add_text_to_video(input_video_path, output_video_path, text_input, text_animation):
# Define text animation filter based on dropdown selection
if text_animation == "fade_in_out":
text_animation_filter = f"drawtext=text='{text_input}':fontsize=24:fontcolor=darkslategray:fontfile=Opensans.ttf:box=1:[email protected]:boxborderw=5:x=w+tw-55*t:y=h-line_h-20:enable='between(t,0,10*(n-1)/10)':x='if(lt(t,10*(n-1)/10),(w-text_w)/2+(w/10)*mod(t,10),NAN)', drawtext=textfile=latest.txt:fontsize=24:fontcolor=white:fontfile=Opensans.ttf:y=h-line_h-20:x=13:box=1:boxcolor=darkorange:boxborderw=8'"
elif text_animation == "slide_from_left":
text_animation_filter = "split[text][tmp];[tmp]crop=w='min(iw\\,iw*max(1,(iw/2-2*t)/iw)):h='min(ih\\,ih*max(1,(ih/2-2*t)/ih)):x=-100+t*300:y=0[tleft];[text]crop=w='min(iw\\,iw*max(1,(iw/2-2*t)/iw)):h='min(ih\\,ih*max(1,(ih/2-2*t)/ih)):x=100-t*300:y=0[tright];[tmp][tleft]overlay=x='min(0,-100+t*300)':y=0[tmp];[tmp][tright]overlay=x='min(0,100-t*300)':y=0"
else:
text_animation_filter = "" # No animation
# Check if text_input is empty or text_animation is "None"
if not text_input or text_animation == "None":
# Return the input video path without any modifications
return input_video_path
print("text filter:",text_animation_filter)
# Run ffmpeg command to overlay text onto the video with animation
cmd = [
"ffmpeg","-y",
"-i", input_video_path,
"-vf", text_animation_filter,
"-c:a", "copy",
output_video_path
]
print(" ".join(cmd))
subprocess.run(cmd)
return output_video_path
def image_to_video_section():
st.title("Image-to-Video Generation")
# Multi-input box for entering the article
article = st.text_area("Enter the article:", "Your article here")
# Define video filter options
video_filter_options=["None","Vintage warm","Grayscale","Invert","Sepia"]
# Add text overlay options outside of the button block
text_input = st.text_input("Enter text to overlay")
text_animation_options = ["None", "fade_in_out", "Horizontal scroll"]
text_animation = st.selectbox("Select text animation", text_animation_options)
print("text applied:",text_input)
# Select video filter
video_filter = st.selectbox("Select video filter", video_filter_options)
# Button to trigger keyword extraction and video generation
if st.button("Generate Video"):
if article.strip() != "":
# Extract keywords using OpenAI API
keywords = extract_keywords(article)
st.write(keywords)
# Fetch images from Google Images based on keywords
image_urls = fetch_images(" ".join(keywords.split()[:10])) # Fetch images based on the first 5 keywords
if image_urls:
st.success("Images fetched successfully!")
# Display the first 5 images
for image_url in image_urls:
st.image(image_url, caption='Image from Google', use_column_width=True)
# Create video slideshow from fetched images
video_path = create_video_slideshow(image_urls)
# Display generated video
st.video(video_path)
#video filter
if video_filter=="Vintage warm":
video_filt="eq=brightness=0.05:saturation=1.5"
elif video_filter=="Grayscale":
video_filt="hue=s=0"
elif video_filter=="Invert":
video_filt="lutrgb='r=negval:g=negval:b=negval'"
elif video_filter=="Sepia":
video_filt="colorchannelmixer=.393:.769:.189:0:.349:.686:.168:0:.272:.534:.131"
else:
video_filt="" #no filter
if not video_filter=="None":
cmdvid=["ffmpeg","-y","-i", video_path,"-vf",video_filt,"-c:a", "copy","videofilter.mp4"]
print(" ".join(cmdvid))
subprocess.run(cmdvid)
st.video("videofilter.mp4")
#text filter
if text_animation == "fade_in_out":
text_animation_filter = f"drawtext=text='{text_input}':fontsize=24:fontcolor=darkslategray:fontfile=Opensans.ttf:box=1:[email protected]:boxborderw=5:x=w+tw-55*t:y=h-line_h-20:enable='between(t,0,10*(n-1)/10)':x='if(lt(t,10*(n-1)/10),(w-text_w)/2+(w/10)*mod(t,10),NAN)', drawtext=textfile=latest.txt:fontsize=24:fontcolor=white:fontfile=Opensans.ttf:y=h-line_h-20:x=13:box=1:boxcolor=darkorange:boxborderw=8'"
elif text_animation == "Horizontal scroll":
text_animation_filter =f"drawtext=text='{text_input}':fontsize=24:fontcolor=darkslategray:fontfile=Opensans.ttf:box=1:[email protected]:boxborderw=5:x=w+tw-55*t:y=h-line_h-20:enable='between(t,0,10*(n-1)/10)':x='if(lt(t,10*(n-1)/10),(w-text_w)/2+(w/10)*mod(t,10),NAN)', drawtext=textfile=latest.txt:fontsize=24:fontcolor=white:fontfile=Opensans.ttf:y=h-line_h-20:x=13:box=1:boxcolor=darkorange:boxborderw=8'"
else:
text_animation_filter = "" # No animation
# Check if text_input is empty or text_animation is "None"
if not text_input or text_animation == "None":
# Return the input video path without any modifications
return video_path
print("text filter:",text_animation_filter)
# Run ffmpeg command to overlay text onto the video with animation
cmd = [
"ffmpeg","-y",
"-i", video_path,
"-vf", text_animation_filter,
"-c:a", "copy",
"output_video.mp4"
]
print(" ".join(cmd))
subprocess.run(cmd)
#return output_video_path
# Add text overlay to the generated video
st.video("output_video.mp4")
else:
st.error("No images found for the given keywords.")
else:
st.warning("Please enter an article before generating the video.")
def frame_extraction():
st.title("Insightly Video")
# stream_url = st.text_input("Enter the live stream URL (YouTube, Twitch, etc.):")
# keyword = st.text_input("Enter a keyword to filter the frames (optional):")
uploaded_video = st.file_uploader("Or upload a video file (MP4):", type=["mp4"])
# Slider to select the number of seconds for extraction
seconds = st.slider("Select the number of seconds for extraction:", min_value=1, max_value=60, value=10)
extract_frames_button = st.button("Extract Frames")
if uploaded_video is not None and extract_frames_button:
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp4") as tmpfile:
tmpfile.write(uploaded_video.getvalue())
video_file_path = tmpfile.name
ffmpeg_command = [
'ffmpeg', # Input stream URL
'-i', video_file_path,
'-t', str(seconds), # Duration to process the input (selected seconds)
'-vf', 'fps=1', # Extract one frame per second
'-f', 'image2pipe', # Output format as image2pipe
'-c:v', 'mjpeg', # Codec for output video
'-an', # No audio
'-'
]
ffmpeg_output = execute_fmpeg_command(ffmpeg_command)
if ffmpeg_output:
st.write("Frames Extracted:")
frame_bytes_list = ffmpeg_output.split(b'\xff\xd8')[1:] # Correct splitting for JPEG frames
n_frames = len(frame_bytes_list)
base64_frames = [base64.b64encode(b'\xff\xd8' + frame_bytes).decode('utf-8') for frame_bytes in frame_bytes_list]
frame_dict = {}
for idx, frame_base64 in enumerate(base64_frames):
col1, col2 = st.columns([3, 2])
with col1:
frame_bytes = base64.b64decode(frame_base64)
frame_dict[idx + 1] = frame_bytes
st.image(Image.open(BytesIO(frame_bytes)), caption=f'Frame {idx + 1}', use_column_width=True)
with col2:
pass
# Here, you might want to process combined_analysis_results to summarize or just display them
# Extract audio
audio_command = [
'ffmpeg',
'-i', video_file_path,
'-t', str(seconds),
'-vf', 'fps=1', # Input stream URL
'-vn', # Ignore the video for the audio output
'-acodec', 'libmp3lame', # Set the audio codec to MP3 # Duration for the audio extraction (selected seconds)
'-f', 'mp3', # Output format as MP3
'-'
]
audio_output, _ = execute_ffmpeg_command(audio_command)
st.write("Extracted Audio:")
audio_tempfile = tempfile.NamedTemporaryFile(delete=False, suffix=".mp3")
audio_tempfile.write(audio_output)
audio_tempfile.close()
st.audio(audio_output, format='audio/mpeg', start_time=0)
# Get consolidated description for all frames
if ffmpeg_output:
description, frame_numbers = generate_description(base64_frames)
if description:
st.header("Frame Description:")
st.write(description)
else:
st.write("Failed to generate description.")
if frame_numbers:
print("Frame numbers to extract:", frame_numbers) # Check frame numbers
# Create a mapping from original frame numbers to sequential numbers
frame_mapping = {}
new_frame_numbers = []
for idx, frame_number in enumerate(sorted(frame_numbers)):
frame_mapping[frame_number] = idx + 1
new_frame_numbers.append(idx + 1)
print("New frame numbers:", new_frame_numbers)
print("Frame mapping:", frame_mapping)
# Create a temporary directory to store images
with tempfile.TemporaryDirectory() as temp_dir:
image_paths = []
for frame_number in frame_numbers:
if frame_number in frame_dict:
frame_path = os.path.join(temp_dir, f'frame_{frame_mapping[frame_number]:03}.jpg') # Updated file naming
image_paths.append(frame_path)
with open(frame_path, 'wb') as f:
f.write(frame_dict[frame_number])
# Once all selected frames are saved as images, create a video from them using FFmpeg
video_output_path = os.path.join(temp_dir, 'output.mp4')
framerate = 1 # Adjust framerate based on the number of frames
ffmpeg_command = [
'ffmpeg',
'-framerate', str(framerate), # Set framerate based on the number of frames
'-i', os.path.join(temp_dir, 'frame_%03d.jpg'), # Input pattern for all frame files
'-c:v', 'libx264',
'-pix_fmt', 'yuv420p',
video_output_path
]
print("FFmpeg command:", ' '.join(ffmpeg_command)) # Debug FFmpeg command
subprocess.run(ffmpeg_command, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
# Display or provide a download link for the created video
st.header("Final Video")
st.video(video_output_path)
else:
st.write(" ")
def main():
# st.title("Video Uploader and Player")
# uploaded_file = st.file_uploader("Upload a video", type=["mp4", "mov"])
# if uploaded_file is not None:
# Save the uploaded video to disk
# with open("uploaded_video.mp4", "wb") as f:
# f.write(uploaded_file.getbuffer())
# st.success("Video uploaded successfully!")
# Display the uploaded video
# st.video("uploaded_video.mp4")
# Add accordion menu for text to video and image to video sections
menu_selection = st.sidebar.selectbox("Select:", ["Text to video", "Image to video","Frame Extraction"])
if menu_selection == "Text to video":
text_to_video_section()
elif menu_selection == "Image to video":
image_to_video_section()
elif menu_selection == "Frame Extraction":
frame_extraction()
if __name__ == "__main__":
main()
|