Spaces:
Running
Running
Create utils.py
Browse files
utils.py
ADDED
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import requests
|
2 |
+
|
3 |
+
def google_search(query, api_key, cx):
|
4 |
+
url = f"https://www.googleapis.com/customsearch/v1?q={query}&key={api_key}&cx={cx}"
|
5 |
+
|
6 |
+
response = requests.get(url)
|
7 |
+
|
8 |
+
if response.status_code == 200:
|
9 |
+
search_results = response.json()
|
10 |
+
return search_results
|
11 |
+
else:
|
12 |
+
print(f"Error: {response.status_code}")
|
13 |
+
return None
|
14 |
+
|
15 |
+
|
16 |
+
|
17 |
+
|
18 |
+
def generate_embedding_for_user_resume(data,user_id):
|
19 |
+
from sentence_transformers import SentenceTransformer
|
20 |
+
|
21 |
+
model = SentenceTransformer("nomic-ai/nomic-embed-text-v1", trust_remote_code=True)
|
22 |
+
|
23 |
+
|
24 |
+
def get_embedding(data, precision="float32"):
|
25 |
+
return model.encode(data, precision=precision)
|
26 |
+
|
27 |
+
|
28 |
+
from pinecone import Vector
|
29 |
+
def create_docs_with_vector_embeddings(bson_float32, data):
|
30 |
+
docs = []
|
31 |
+
for i, (bson_f32_emb, text) in enumerate(zip(bson_float32, data)):
|
32 |
+
doc =Vector(
|
33 |
+
id=f"{i}",
|
34 |
+
values= bson_f32_emb.tolist(),
|
35 |
+
metadata={"text":text,"user_id":user_id},
|
36 |
+
)
|
37 |
+
docs.append(doc)
|
38 |
+
return docs
|
39 |
+
float32_embeddings = get_embedding(data, "float32")
|
40 |
+
|
41 |
+
|
42 |
+
|
43 |
+
|
44 |
+
docs = create_docs_with_vector_embeddings(float32_embeddings, data)
|
45 |
+
return docs
|
46 |
+
|
47 |
+
|
48 |
+
def insert_embeddings_into_pinecone_database(doc,api_key,name_space):
|
49 |
+
from pinecone import Pinecone
|
50 |
+
pc = Pinecone(api_key=api_key)
|
51 |
+
index_name = "resumes"
|
52 |
+
index = pc.Index(index_name)
|
53 |
+
upsert_response = index.upsert(namespace=name_space,vectors=doc)
|
54 |
+
return upsert_response
|
55 |
+
|
56 |
+
|
57 |
+
|
58 |
+
|
59 |
+
def query_vector_database(query,api_key,name_space):
|
60 |
+
from pinecone import Pinecone
|
61 |
+
from sentence_transformers import SentenceTransformer
|
62 |
+
model = SentenceTransformer("nomic-ai/nomic-embed-text-v1", trust_remote_code=True)
|
63 |
+
ret=[]
|
64 |
+
pc = Pinecone(api_key=api_key)
|
65 |
+
index_name = "resumes"
|
66 |
+
|
67 |
+
|
68 |
+
index = pc.Index(index_name)
|
69 |
+
|
70 |
+
# Define a function to generate embeddings in multiple precisions
|
71 |
+
def get_embedding(data, precision="float32"):
|
72 |
+
return model.encode(data, precision=precision)
|
73 |
+
|
74 |
+
query_embedding = get_embedding(query, precision="float32")
|
75 |
+
|
76 |
+
response = index.query(
|
77 |
+
namespace=name_space,
|
78 |
+
vector=query_embedding.tolist(),
|
79 |
+
top_k=3,
|
80 |
+
include_metadata=True
|
81 |
+
)
|
82 |
+
|
83 |
+
|
84 |
+
for doc in response['matches']:
|
85 |
+
ret.append(doc['metadata']['text'])
|
86 |
+
return ret
|
87 |
+
|
88 |
+
|
89 |
+
def delete_vector_namespace(name_space,api_key):
|
90 |
+
from pinecone import Pinecone
|
91 |
+
pc = Pinecone(api_key=api_key)
|
92 |
+
index_name = "resumes"
|
93 |
+
|
94 |
+
|
95 |
+
index = pc.Index(index_name)
|
96 |
+
response = index.delete(delete_all=True,namespace=name_space)
|
97 |
+
return response
|
98 |
+
|
99 |
+
|
100 |
+
|
101 |
+
def split_text_into_chunks(text, chunk_size=400):
|
102 |
+
# Split the text into words using whitespace.
|
103 |
+
words = text.split()
|
104 |
+
|
105 |
+
# Group the words into chunks of size 'chunk_size'.
|
106 |
+
chunks = [' '.join(words[i:i + chunk_size]) for i in range(0, len(words), chunk_size)]
|
107 |
+
return chunks
|
108 |
+
|