versae's picture
Maken CLIP Sketch
0f14459
raw
history blame
3.68 kB
import os
from pathlib import Path
import pandas as pd, numpy as np
from transformers import CLIPProcessor, CLIPTextModel, CLIPModel
import torch
from torch import nn
import gradio as gr
import requests
from PIL import Image, ImageFile
ImageFile.LOAD_TRUNCATED_IMAGES = True
LABELS = Path('class_names.txt').read_text().splitlines()
class_model = nn.Sequential(
nn.Conv2d(1, 32, 3, padding='same'),
nn.ReLU(),
nn.MaxPool2d(2),
nn.Conv2d(32, 64, 3, padding='same'),
nn.ReLU(),
nn.MaxPool2d(2),
nn.Conv2d(64, 128, 3, padding='same'),
nn.ReLU(),
nn.MaxPool2d(2),
nn.Flatten(),
nn.Linear(1152, 256),
nn.ReLU(),
nn.Linear(256, len(LABELS)),
)
state_dict = torch.load('pytorch_model.bin', map_location='cpu')
class_model.load_state_dict(state_dict, strict=False)
class_model.eval()
model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
df = pd.read_csv('clip.csv')
embeddings_npy = np.load('clip.npy')
embeddings = np.divide(embeddings_npy, np.sqrt(np.sum(embeddings_npy**2, axis=1, keepdims=True)))
def compute_text_embeddings(list_of_strings):
inputs = processor(text=list_of_strings, return_tensors="pt", padding=True)
return model.get_text_features(**inputs)
def compute_image_embeddings(list_of_images):
inputs = processor(images=list_of_images, return_tensors="pt", padding=True)
return model.get_image_features(**inputs)
def load_image(image, same_height=False):
# im = Image.open(path)
im = Image.fromarray(np.uint8(image))
if im.mode != 'RGB':
im = im.convert('RGB')
if same_height:
ratio = 224/im.size[1]
return im.resize((int(im.size[0]*ratio), int(im.size[1]*ratio)))
else:
ratio = 224/min(im.size)
return im.resize((int(im.size[0]*ratio), int(im.size[1]*ratio)))
def download_img(identifier, url):
local_path = f"{identifier}.jpg"
if not os.path.isfile(local_path):
img_data = requests.get(url).content
with open(local_path, 'wb') as handler:
handler.write(img_data)
return local_path
def predict(image=None, text=None, sketch=None):
if image is not None:
input_embeddings = compute_image_embeddings([load_image(image)]).detach().numpy()
topk = {"local": 100}
else:
if text:
query = text
topk = {text: 100}
else:
x = torch.tensor(sketch, dtype=torch.float32).unsqueeze(0).unsqueeze(0) / 255.
with torch.no_grad():
out = class_model(x)
probabilities = torch.nn.functional.softmax(out[0], dim=0)
values, indices = torch.topk(probabilities, 5)
query = LABELS[indices[0]]
topk = {LABELS[i]: v.item() for i, v in zip(indices, values)}
input_embeddings = compute_text_embeddings([query]).detach().numpy()
n_results = 3
results = np.argsort((embeddings @ input_embeddings.T)[:, 0])[-1:-n_results - 1:-1]
outputs = [download_img(df.iloc[i]['id'], df.iloc[i]['thumbnail']) for i in results]
outputs.insert(0, topk)
print(outputs)
return outputs
def predict_sketch(sketch):
return predict(None, None, sketch)
title = "Type or draw to search in the Nasjonalbiblioteket"
description = "Find images in the Nasjonalbiblioteket image collections based on what you draw or type"
interface = gr.Interface(
fn=[predict_sketch],
inputs=["sketch"],
outputs=[gr.outputs.Label(num_top_classes=3)] + 3 * [gr.outputs.Image(type="file")],
title=title,
description=description,
live=True
)
interface.launch(debug=True)