Spaces:
Runtime error
Runtime error
import os | |
from pathlib import Path | |
import pandas as pd, numpy as np | |
from transformers import CLIPProcessor, CLIPTextModel, CLIPModel | |
import torch | |
from torch import nn | |
import gradio as gr | |
import requests | |
from PIL import Image, ImageFile | |
ImageFile.LOAD_TRUNCATED_IMAGES = True | |
LABELS = Path('class_names.txt').read_text().splitlines() | |
class_model = nn.Sequential( | |
nn.Conv2d(1, 32, 3, padding='same'), | |
nn.ReLU(), | |
nn.MaxPool2d(2), | |
nn.Conv2d(32, 64, 3, padding='same'), | |
nn.ReLU(), | |
nn.MaxPool2d(2), | |
nn.Conv2d(64, 128, 3, padding='same'), | |
nn.ReLU(), | |
nn.MaxPool2d(2), | |
nn.Flatten(), | |
nn.Linear(1152, 256), | |
nn.ReLU(), | |
nn.Linear(256, len(LABELS)), | |
) | |
state_dict = torch.load('pytorch_model.bin', map_location='cpu') | |
class_model.load_state_dict(state_dict, strict=False) | |
class_model.eval() | |
model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32") | |
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32") | |
df = pd.read_csv('clip.csv') | |
embeddings_npy = np.load('clip.npy') | |
embeddings = np.divide(embeddings_npy, np.sqrt(np.sum(embeddings_npy**2, axis=1, keepdims=True))) | |
def compute_text_embeddings(list_of_strings): | |
inputs = processor(text=list_of_strings, return_tensors="pt", padding=True) | |
return model.get_text_features(**inputs) | |
def compute_image_embeddings(list_of_images): | |
inputs = processor(images=list_of_images, return_tensors="pt", padding=True) | |
return model.get_image_features(**inputs) | |
def load_image(image, same_height=False): | |
# im = Image.open(path) | |
im = Image.fromarray(np.uint8(image)) | |
if im.mode != 'RGB': | |
im = im.convert('RGB') | |
if same_height: | |
ratio = 224/im.size[1] | |
return im.resize((int(im.size[0]*ratio), int(im.size[1]*ratio))) | |
else: | |
ratio = 224/min(im.size) | |
return im.resize((int(im.size[0]*ratio), int(im.size[1]*ratio))) | |
def download_img(identifier, url): | |
local_path = f"{identifier}.jpg" | |
if not os.path.isfile(local_path): | |
img_data = requests.get(url).content | |
with open(local_path, 'wb') as handler: | |
handler.write(img_data) | |
return local_path | |
def predict(image=None, text=None, sketch=None): | |
if image is not None: | |
input_embeddings = compute_image_embeddings([load_image(image)]).detach().numpy() | |
topk = {"local": 100} | |
else: | |
if text: | |
query = text | |
topk = {text: 100} | |
else: | |
x = torch.tensor(sketch, dtype=torch.float32).unsqueeze(0).unsqueeze(0) / 255. | |
with torch.no_grad(): | |
out = class_model(x) | |
probabilities = torch.nn.functional.softmax(out[0], dim=0) | |
values, indices = torch.topk(probabilities, 5) | |
query = LABELS[indices[0]] | |
topk = {LABELS[i]: v.item() for i, v in zip(indices, values)} | |
input_embeddings = compute_text_embeddings([query]).detach().numpy() | |
n_results = 3 | |
results = np.argsort((embeddings @ input_embeddings.T)[:, 0])[-1:-n_results - 1:-1] | |
outputs = [download_img(df.iloc[i]['id'], df.iloc[i]['thumbnail']) for i in results] | |
outputs.insert(0, topk) | |
print(outputs) | |
return outputs | |
def predict_sketch(sketch): | |
return predict(None, None, sketch) | |
title = "Type or draw to search in the Nasjonalbiblioteket" | |
description = "Find images in the Nasjonalbiblioteket image collections based on what you draw or type" | |
interface = gr.Interface( | |
fn=[predict_sketch], | |
inputs=["sketch"], | |
outputs=[gr.outputs.Label(num_top_classes=3)] + 3 * [gr.outputs.Image(type="file")], | |
title=title, | |
description=description, | |
live=True | |
) | |
interface.launch(debug=True) | |