Spaces:
Sleeping
Sleeping
File size: 6,844 Bytes
0c33f8e d4013a9 d7b6b41 5ac7bfa feeb4e0 5153766 7e910e3 5153766 aa308cd 5153766 9e3d73f da31718 7e31776 6efa8c2 7452937 c53da7c b1cb04d 7e910e3 7452937 7e910e3 62c451b abd572c 88be566 9f310c7 ad4c080 db8f81e 9f310c7 4ab8825 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 |
import spaces
from huggingface_hub import from_pretrained_fastai
import gradio as gr
import torch
import torchaudio
import torchaudio.functional as Ft
import torchaudio.transforms as T
import os
from pathlib import Path
repo_id = "NeerAbhy/Speech_recognotion_model/Speech_recognition_model_2.pth"
class TextTransform:
def __init__(self):
char_map_str = """
' 0
<SPACE> 1
a 2
b 3
c 4
d 5
e 6
f 7
g 8
h 9
i 10
j 11
k 12
l 13
m 14
n 15
o 16
p 17
q 18
r 19
s 20
t 21
u 22
v 23
w 24
x 25
y 26
z 27
"""
self.char_map = {}
self.index_map = {}
for line in char_map_str.strip().split('\n'):
ch, index = line.split()
self.char_map[ch] = int(index)
self.index_map[int(index)] = ch
self.index_map[1] = ' '
def text_to_int(self, text):
int_sequence = []
for c in text:
if c == ' ':
ch = self.char_map['<SPACE>']
else:
ch = self.char_map[c]
int_sequence.append(ch)
return int_sequence
def int_to_text(self,labels):
string = []
for i in labels:
string.append(self.index_map[i])
return ''.join(string).replace('<SPACE>', ' ')
from torch import nn
trainaudio_transforms = nn.Sequential(
torchaudio.transforms.MelSpectrogram(sample_rate = 16000, n_mels = 128),
torchaudio.transforms.FrequencyMasking(freq_mask_param = 15),
torchaudio.transforms.TimeMasking(time_mask_param = 35))
text_transform = TextTransform()
import torch.nn.functional as F
class CNNLayerNorm(nn.Module):
def __init__(self, n_feats):
super(CNNLayerNorm, self).__init__()
self.layer_norm = nn.LayerNorm(n_feats)
def forward(self, x):
x = x.transpose(2,3).contiguous()
x = self.layer_norm(x)
return x.transpose(2,3).contiguous()
class ResidualCNN(nn.Module):
def __init__(self, in_channels, out_channels, kernel, stride, dropout, n_feats):
super(ResidualCNN, self).__init__()
self.cnn1 = nn.Conv2d(in_channels, out_channels, kernel, stride, padding = kernel//2)
self.cnn2 = nn.Conv2d(out_channels, out_channels, kernel, stride, padding = kernel//2)
self.dropout1 = nn.Dropout(dropout)
self.dropout2 = nn.Dropout(dropout)
self.layernorm1 = CNNLayerNorm(n_feats)
self.layernorm2 = CNNLayerNorm(n_feats)
def forward(self, x):
residual = x
x = self.layernorm1(x)
x = self.dropout1(x)
x = F.gelu(x)
x = self.cnn1(x)
x = self.layernorm2(x)
x = self.dropout2(x)
x = F.gelu(x)
x = self.cnn2(x)
x += residual
return x
class BiDirectionalGRU(nn.Module):
def __init__(self, rnn_dim, hidden_size, dropout, batch_first):
super(BiDirectionalGRU, self).__init__()
self.BiGRU = nn.GRU(
input_size = rnn_dim, hidden_size = hidden_size,
num_layers = 1, batch_first = batch_first, bidirectional = True)
self.layernorm = nn.LayerNorm(rnn_dim)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
x = self.layernorm(x)
x = F.gelu(x)
x, _ = self.BiGRU(x)
x = self.dropout(x)
return x
class SpeechRecognitionModel(nn.Module):
def __init__(self, n_cnn_layers, n_rnn_layers, rnn_dim, n_class, n_feats, stride = 2, dropout = 0.1):
super(SpeechRecognitionModel, self).__init__()
n_feats = n_feats//2
self.cnn = nn. Conv2d(1, 32, 3, stride = stride, padding = 3//2)
self.rescnn_layers = nn.Sequential(*[
ResidualCNN(32, 32, kernel = 3, stride = 1, dropout = dropout, n_feats = n_feats)
for _ in range(n_cnn_layers)
])
self.fully_connected = nn.Linear(n_feats*32, rnn_dim)
self.birnn_layers = nn.Sequential(*[
BiDirectionalGRU(rnn_dim=rnn_dim if i==0 else rnn_dim*2,
hidden_size=rnn_dim, dropout=dropout, batch_first=i==0)
for i in range(n_rnn_layers)
])
self.classifier = nn.Sequential(
nn.Linear(rnn_dim*2, rnn_dim),
nn.GELU(),
nn.Dropout(dropout),
nn.Linear(rnn_dim, n_class))
def forward(self, x):
x = self.cnn(x)
x = self.rescnn_layers(x)
sizes = x.size()
x = x.view(sizes[0], sizes[1]*sizes[2], sizes[3])
x = x.transpose(1,2)
x = self.fully_connected(x)
x= self.birnn_layers(x)
x = self.classifier(x)
return x
learning_rate=5e-4
batch_size=16
epochs=5
hparams = {
"n_cnn_layers": 3,
"n_rnn_layers": 5,
"rnn_dim": 512,
"n_class": 29,
"n_feats": 128,
"stride":2,
"dropout": 0.1,
"learning_rate": learning_rate,
"batch_size": batch_size,
"epochs": epochs
}
model = SpeechRecognitionModel(
hparams['n_cnn_layers'], hparams['n_rnn_layers'], hparams['rnn_dim'],
hparams['n_class'], hparams['n_feats'], hparams['stride'], hparams['dropout']
)
model.load_state_dict(torch.load("./Speech_recognition_model_2.pth",map_location=torch.device('cpu')))
#model = from_pretrained_fastai(repo_id)
def prediction(audio):
valid_audio_transforms = torchaudio.transforms.MelSpectrogram(sample_rate = 16000)
spectrogram = []
waveform, freq = torchaudio.load(audio)
resampler = T.Resample(freq, 16000, dtype=waveform.dtype)
resampled_waveform = resampler(waveform)
spec = valid_audio_transforms(resampled_waveform).squeeze(0).transpose(0,1)
spectrogram.append(spec)
spec = nn.utils.rnn.pad_sequence(spectrogram, batch_first = True).unsqueeze(1).transpose(2,3)
spec = spec
model.eval()
with torch.no_grad():
output = model(spec)
output = F.log_softmax(output, dim=2)
arg_maxes = torch.argmax(output, dim=2)
decodes = []
for i, args in enumerate(arg_maxes):
decode = []
for j, index in enumerate(args):
if index != 28:
if True and j != 0 and index == args[j -1]:
continue
decode.append(index.item())
decodes.append(text_transform.int_to_text(decode))
return decodes
#microphone_input = gr.Audio( type="filepath", label="Record")
#upload_input = gr.Audio( type="filepath", label="Upload File")
audio_input = gr.Audio(type='filepath', label="Upload an audio file")
emotion_output = gr.Textbox(label="Predicted Emotion")
examples=[["2902-9008-0000.flac"],["2902-9008-0001.flac"],["2902-9008-0002.flac"],["2902-9008-0003.flac"],["2902-9008-0004.flac"]]
interface = gr.Interface(fn=prediction, inputs=audio_input, outputs=emotion_output,examples =examples)
interface.launch(share=True)
|