Spaces:
Running
Running
File size: 6,476 Bytes
3385bd3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 |
import gradio as gr
from huggingface_hub import HfApi, HfFolder, hf_hub_download, snapshot_download
import os
from pathlib import Path
import shutil
import gc
import re
import urllib.parse
import subprocess
import time
from typing import Any
def get_state(state: dict, key: str):
if key in state.keys(): return state[key]
else:
print(f"State '{key}' not found.")
return None
def set_state(state: dict, key: str, value: Any):
state[key] = value
def get_user_agent():
return 'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:127.0) Gecko/20100101 Firefox/127.0'
MODEL_TYPE_CLASS = {
"diffusers:StableDiffusionPipeline": "SD 1.5",
"diffusers:StableDiffusionXLPipeline": "SDXL",
"diffusers:FluxPipeline": "FLUX",
}
def get_model_type(repo_id: str):
hf_token = get_token()
api = HfApi(token=hf_token)
lora_filename = "pytorch_lora_weights.safetensors"
diffusers_filename = "model_index.json"
default = "SDXL"
try:
if api.file_exists(repo_id=repo_id, filename=lora_filename, token=hf_token): return "LoRA"
if not api.file_exists(repo_id=repo_id, filename=diffusers_filename, token=hf_token): return "None"
model = api.model_info(repo_id=repo_id, token=hf_token)
tags = model.tags
for tag in tags:
if tag in MODEL_TYPE_CLASS.keys(): return MODEL_TYPE_CLASS.get(tag, default)
except Exception:
return default
return default
def list_uniq(l):
return sorted(set(l), key=l.index)
def list_sub(a, b):
return [e for e in a if e not in b]
def is_repo_name(s):
return re.fullmatch(r'^[\w_\-\.]+/[\w_\-\.]+$', s)
def download_thing(directory, url, civitai_api_key="", progress=gr.Progress(track_tqdm=True)): # requires aria2, gdown
try:
url = url.strip()
if "drive.google.com" in url:
original_dir = os.getcwd()
os.chdir(directory)
subprocess.run(f"gdown --fuzzy {url}", shell=True)
os.chdir(original_dir)
elif "huggingface.co" in url:
url = url.replace("?download=true", "")
if "/blob/" in url: url = url.replace("/blob/", "/resolve/")
download_hf_file(directory, url)
elif "civitai.com" in url:
if civitai_api_key:
url = f"'{url}&token={civitai_api_key}'" if "?" in url else f"{url}?token={civitai_api_key}"
print(f"Downloading {url}")
subprocess.run(f"aria2c --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 -d {directory} {url}", shell=True)
else:
print("You need an API key to download Civitai models.")
else:
os.system(f"aria2c --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 -d {directory} {url}")
except Exception as e:
print(f"Failed to download: {e}")
def get_local_file_list(dir_path, recursive=False):
file_list = []
pattern = "**/*.*" if recursive else "*/*.*"
for file in Path(dir_path).glob(pattern):
if file.is_file():
file_path = str(file)
file_list.append(file_path)
return file_list
def get_download_file(temp_dir, url, civitai_key, progress=gr.Progress(track_tqdm=True)):
try:
if not "http" in url and is_repo_name(url) and not Path(url).exists():
print(f"Use HF Repo: {url}")
new_file = url
elif not "http" in url and Path(url).exists():
print(f"Use local file: {url}")
new_file = url
elif Path(f"{temp_dir}/{url.split('/')[-1]}").exists():
print(f"File to download alreday exists: {url}")
new_file = f"{temp_dir}/{url.split('/')[-1]}"
else:
print(f"Start downloading: {url}")
recursive = False if "huggingface.co" in url else True
before = get_local_file_list(temp_dir, recursive)
download_thing(temp_dir, url.strip(), civitai_key)
after = get_local_file_list(temp_dir, recursive)
new_file = list_sub(after, before)[0] if list_sub(after, before) else ""
if not new_file:
print(f"Download failed: {url}")
return ""
print(f"Download completed: {url}")
return new_file
except Exception as e:
print(f"Download failed: {url} {e}")
return ""
def gate_repo(repo_id: str, gated_str: str, repo_type: str="model"):
hf_token = get_token()
api = HfApi(token=hf_token)
try:
if gated_str == "auto": gated = "auto"
elif gated_str == "manual": gated = "manual"
else: gated = False
api.update_repo_settings(repo_id=repo_id, gated=gated, repo_type=repo_type, token=hf_token)
except Exception as e:
print(f"Error: Failed to update settings {repo_id}. {e}")
HF_SUBFOLDER_NAME = ["None", "user_repo"]
BASE_DIR = os.getcwd()
CIVITAI_API_KEY = os.environ.get("CIVITAI_API_KEY")
def get_file(url: str, path: str): # requires aria2, gdown
print(f"Downloading {url} to {path}...")
get_download_file(path, url, CIVITAI_API_KEY)
def git_clone(url: str, path: str, pip: bool=False, addcmd: str=""): # requires git
os.makedirs(str(Path(BASE_DIR, path)), exist_ok=True)
os.chdir(Path(BASE_DIR, path))
print(f"Cloning {url} to {path}...")
cmd = f'git clone {url}'
print(f'Running {cmd} at {Path.cwd()}')
i = subprocess.run(cmd, shell=True).returncode
if i != 0: print(f'Error occured at running {cmd}')
p = url.split("/")[-1]
if not Path(p).exists: return
if pip:
os.chdir(Path(BASE_DIR, path, p))
cmd = f'pip install -r requirements.txt'
print(f'Running {cmd} at {Path.cwd()}')
i = subprocess.run(cmd, shell=True).returncode
if i != 0: print(f'Error occured at running {cmd}')
if addcmd:
os.chdir(Path(BASE_DIR, path, p))
cmd = addcmd
print(f'Running {cmd} at {Path.cwd()}')
i = subprocess.run(cmd, shell=True).returncode
if i != 0: print(f'Error occured at running {cmd}')
def run(cmd: str, timeout: float=0):
print(f'Running {cmd} at {Path.cwd()}')
if timeout == 0:
i = subprocess.run(cmd, shell=True).returncode
if i != 0: print(f'Error occured at running {cmd}')
else:
p = subprocess.Popen(cmd, shell=True)
time.sleep(timeout)
p.terminate()
print(f'Terminated in {timeout} seconds')
|