Spaces:
Sleeping
Sleeping
File size: 6,153 Bytes
9a85c9a b49028b 9a85c9a b49028b 335b9eb e1af719 d532b1b b49028b 88a47ac d532b1b 794af68 98da479 89db232 98da479 df7edb8 9a85c9a 88c2b88 e9073c2 9a85c9a e9073c2 db45ded 9a85c9a ff8b33b 9a85c9a db45ded 9a85c9a e9073c2 26acab0 e9073c2 9e67411 6343e6d 9a85c9a db45ded 0b2fffd db45ded 0b2fffd 3acd203 4593ac7 7a7857a c468b59 3acd203 714116a 0b2fffd db45ded 9a85c9a db45ded e9073c2 db45ded fdcc4cf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 |
import sys, os
import torch
import argparse
import commons
import utils
from models import SynthesizerTrn
from text.symbols import symbols
from text import cleaned_text_to_sequence, get_bert
from text.cleaner import clean_text
import gradio as gr
import webbrowser
import soundfile as sf
from datetime import datetime
import pytz
net_g = None
models = {
"AdorableDarling": "./MODELS/adorabledarling.pth",
"Silverleg": "./MODELS/J8900.pth",
"Takemura": "./MODELS/take2.pth",
"LucidMoon": "./MODELS/lucid.pth",
"Rrabbitt": "./MODELS/rabbit4900.pth",
"MistyNikki": "./MODELS/nikki9400.pth",
"LightHammer": "./MODELS/hammer.pth",
"VivaciousViolet": "./MODELS/vv.pth",
"AlluWin": "./MODELS/AW.pth",
"ArasakaAI": "Arasaka.pth",
"DLM": "./MODELS/DLM.pth",
"BadGirlDLM": "./MODELS/BG1300.pth",
"BadBoyDLM": "./MODELS/BAD1100.pth",
}
def get_text(text, language_str, hps):
norm_text, phone, tone, word2ph = clean_text(text, language_str)
phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str)
if hps.data.add_blank:
phone = commons.intersperse(phone, 0)
tone = commons.intersperse(tone, 0)
language = commons.intersperse(language, 0)
for i in range(len(word2ph)):
word2ph[i] = word2ph[i] * 2
word2ph[0] += 1
bert = get_bert(norm_text, word2ph, language_str)
del word2ph
assert bert.shape[-1] == len(phone)
phone = torch.LongTensor(phone)
tone = torch.LongTensor(tone)
language = torch.LongTensor(language)
return bert, phone, tone, language
def infer(text, sdp_ratio, noise_scale, noise_scale_w, length_scale, sid, model_dir):
global net_g
bert, phones, tones, lang_ids = get_text(text, "ZH", hps)
with torch.no_grad():
x_tst=phones.to(device).unsqueeze(0)
tones=tones.to(device).unsqueeze(0)
lang_ids=lang_ids.to(device).unsqueeze(0)
bert = bert.to(device).unsqueeze(0)
x_tst_lengths = torch.LongTensor([phones.size(0)]).to(device)
del phones
speakers = torch.LongTensor([hps.data.spk2id[sid]]).to(device)
audio = net_g.infer(x_tst, x_tst_lengths, speakers, tones, lang_ids, bert, sdp_ratio=sdp_ratio
, noise_scale=noise_scale, noise_scale_w=noise_scale_w, length_scale=length_scale)[0][0,0].data.cpu().float().numpy()
del x_tst, tones, lang_ids, bert, x_tst_lengths, speakers
sf.write("tmp.wav", audio, 44100)
return audio
def convert_wav_to_mp3(wav_file):
tz = pytz.timezone('Asia/Shanghai')
now = datetime.now(tz).strftime('%m%d%H%M%S')
os.makedirs('out', exist_ok=True)
output_path_mp3 = os.path.join('out', f"{now}.mp3")
renamed_input_path = os.path.join('in', f"in.wav")
os.makedirs('in', exist_ok=True)
os.rename(wav_file.name, renamed_input_path)
command = ["ffmpeg", "-i", renamed_input_path, "-acodec", "libmp3lame", "-y", output_path_mp3]
os.system(" ".join(command))
return output_path_mp3
def tts_generator(text, sdp_ratio, noise_scale, noise_scale_w, length_scale, model):
global net_g,speakers
model_path = models[model]
net_g, _, _, _ = utils.load_checkpoint(model_path, net_g, None, skip_optimizer=True)
try:
with torch.no_grad():
audio = infer(text, sdp_ratio=sdp_ratio, noise_scale=noise_scale, noise_scale_w=noise_scale_w, length_scale=length_scale, sid=speaker,model_dir=model)
with open('tmp.wav', 'rb') as wav_file:
mp3 = convert_wav_to_mp3(wav_file)
return "生成语音成功", (hps.data.sampling_rate, audio), mp3
except Exception as e:
return "生成语音失败:" + str(e), None, None
if __name__ == "__main__":
hps = utils.get_hparams_from_file("./configs/config.json")
device = "cuda:0" if torch.cuda.is_available() else "cpu"
net_g = SynthesizerTrn(
len(symbols),
hps.data.filter_length // 2 + 1,
hps.train.segment_size // hps.data.hop_length,
n_speakers=hps.data.n_speakers,
**hps.model).to(device)
_ = net_g.eval()
speaker_ids = hps.data.spk2id
speaker = list(speaker_ids.keys())[0]
theme='remilia/Ghostly'
with gr.Blocks(theme=theme) as app:
with gr.Column():
with gr.Column():
gr.Markdown("测试用")
text = gr.TextArea(label="输入需要生成语音的文字", placeholder="输入文字",
value="在不在?能不能借给我三百块钱买可乐",
info="使用huggingface的免费CPU进行推理,因此速度不快,一次性不要输入超过500汉字。字数越多,生成速度越慢,请耐心等待",
)
model = gr.Radio(choices=list(models.keys()), value=list(models.keys())[0], label='音声模型')
with gr.Accordion(label="展开设置生成参数", open=False):
sdp_ratio = gr.Slider(minimum=0, maximum=1, value=0.2, step=0.01, label='SDP/DP混合比',info='可控制一定程度的语调变化')
noise_scale = gr.Slider(minimum=0.1, maximum=1.5, value=0.5, step=0.01, label='感情变化')
noise_scale_w = gr.Slider(minimum=0.1, maximum=1.4, value=0.9, step=0.01, label='音节长度')
length_scale = gr.Slider(minimum=0.1, maximum=2, value=1, step=0.01, label='生成语音总长度',info='数值越大,语速越慢')
btn = gr.Button("✨生成", variant="primary")
with gr.Column():
audio_output = gr.Audio(label="试听")
MP3_output = gr.File(label="下载")
text_output = gr.Textbox(label="调试信息")
gr.Markdown("""
""")
btn.click(
tts_generator,
inputs=[text, sdp_ratio, noise_scale, noise_scale_w, length_scale, model],
outputs=[text_output, audio_output,MP3_output]
)
app.launch(show_error=True)
|