File size: 6,153 Bytes
9a85c9a
 
 
 
 
 
 
 
 
 
 
 
 
 
b49028b
9a85c9a
 
 
 
b49028b
335b9eb
e1af719
d532b1b
b49028b
88a47ac
d532b1b
 
794af68
98da479
89db232
98da479
df7edb8
9a85c9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88c2b88
e9073c2
9a85c9a
 
e9073c2
db45ded
 
 
 
 
 
 
 
9a85c9a
ff8b33b
9a85c9a
db45ded
9a85c9a
 
 
 
 
 
 
 
 
 
 
e9073c2
26acab0
e9073c2
9e67411
6343e6d
9a85c9a
 
db45ded
0b2fffd
db45ded
0b2fffd
3acd203
 
4593ac7
7a7857a
 
 
 
c468b59
3acd203
714116a
 
0b2fffd
db45ded
9a85c9a
 
db45ded
 
e9073c2
db45ded
 
fdcc4cf
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import sys, os
import torch
import argparse
import commons
import utils
from models import SynthesizerTrn
from text.symbols import symbols
from text import cleaned_text_to_sequence, get_bert
from text.cleaner import clean_text
import gradio as gr
import webbrowser
import soundfile as sf
from datetime import datetime
import pytz


net_g = None
models = {
    "AdorableDarling": "./MODELS/adorabledarling.pth",
    "Silverleg": "./MODELS/J8900.pth",
    "Takemura": "./MODELS/take2.pth",
    "LucidMoon": "./MODELS/lucid.pth",
    "Rrabbitt": "./MODELS/rabbit4900.pth",
    "MistyNikki": "./MODELS/nikki9400.pth",
    "LightHammer": "./MODELS/hammer.pth",
    "VivaciousViolet": "./MODELS/vv.pth",
    "AlluWin": "./MODELS/AW.pth",
    "ArasakaAI": "Arasaka.pth",
    "DLM": "./MODELS/DLM.pth",
    "BadGirlDLM": "./MODELS/BG1300.pth",
    "BadBoyDLM": "./MODELS/BAD1100.pth",
    
}

def get_text(text, language_str, hps):
    norm_text, phone, tone, word2ph = clean_text(text, language_str)
    phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str)

    if hps.data.add_blank:
        phone = commons.intersperse(phone, 0)
        tone = commons.intersperse(tone, 0)
        language = commons.intersperse(language, 0)
        for i in range(len(word2ph)):
            word2ph[i] = word2ph[i] * 2
        word2ph[0] += 1
    bert = get_bert(norm_text, word2ph, language_str)
    del word2ph

    assert bert.shape[-1] == len(phone)

    phone = torch.LongTensor(phone)
    tone = torch.LongTensor(tone)
    language = torch.LongTensor(language)

    return bert, phone, tone, language

def infer(text, sdp_ratio, noise_scale, noise_scale_w, length_scale, sid, model_dir):
    global net_g
    bert, phones, tones, lang_ids = get_text(text, "ZH", hps)
    with torch.no_grad():
        x_tst=phones.to(device).unsqueeze(0)
        tones=tones.to(device).unsqueeze(0)
        lang_ids=lang_ids.to(device).unsqueeze(0)
        bert = bert.to(device).unsqueeze(0)
        x_tst_lengths = torch.LongTensor([phones.size(0)]).to(device)
        del phones
        speakers = torch.LongTensor([hps.data.spk2id[sid]]).to(device)
        audio = net_g.infer(x_tst, x_tst_lengths, speakers, tones, lang_ids, bert, sdp_ratio=sdp_ratio
                           , noise_scale=noise_scale, noise_scale_w=noise_scale_w, length_scale=length_scale)[0][0,0].data.cpu().float().numpy()
        del x_tst, tones, lang_ids, bert, x_tst_lengths, speakers
        sf.write("tmp.wav", audio, 44100)
        return audio

def convert_wav_to_mp3(wav_file):
    tz = pytz.timezone('Asia/Shanghai')
    now = datetime.now(tz).strftime('%m%d%H%M%S')
    os.makedirs('out', exist_ok=True)  
    output_path_mp3 = os.path.join('out', f"{now}.mp3")

    renamed_input_path = os.path.join('in', f"in.wav")
    os.makedirs('in', exist_ok=True)
    os.rename(wav_file.name, renamed_input_path)
    command = ["ffmpeg", "-i", renamed_input_path, "-acodec", "libmp3lame", "-y", output_path_mp3]
    os.system(" ".join(command))
    return output_path_mp3
    
def tts_generator(text, sdp_ratio, noise_scale, noise_scale_w, length_scale, model):
    global net_g,speakers
    model_path = models[model]
    net_g, _, _, _ = utils.load_checkpoint(model_path, net_g, None, skip_optimizer=True)
    
    try:
        with torch.no_grad():
            audio = infer(text, sdp_ratio=sdp_ratio, noise_scale=noise_scale, noise_scale_w=noise_scale_w, length_scale=length_scale, sid=speaker,model_dir=model)
        with open('tmp.wav', 'rb') as wav_file:
            mp3 = convert_wav_to_mp3(wav_file)  
        return "生成语音成功", (hps.data.sampling_rate, audio), mp3
    except Exception as e:
        return "生成语音失败:" + str(e), None, None


if __name__ == "__main__":
    hps = utils.get_hparams_from_file("./configs/config.json")
    device = "cuda:0" if torch.cuda.is_available() else "cpu"
   
    net_g = SynthesizerTrn(
        len(symbols),
        hps.data.filter_length // 2 + 1,
        hps.train.segment_size // hps.data.hop_length,
        n_speakers=hps.data.n_speakers,
        **hps.model).to(device)
    _ = net_g.eval()

    speaker_ids = hps.data.spk2id
    speaker = list(speaker_ids.keys())[0]
    theme='remilia/Ghostly'
    
    with gr.Blocks(theme=theme) as app:
        with gr.Column():
            with gr.Column():

                gr.Markdown("测试用")
                text = gr.TextArea(label="输入需要生成语音的文字", placeholder="输入文字",
                                value="在不在?能不能借给我三百块钱买可乐",
                                info="使用huggingface的免费CPU进行推理,因此速度不快,一次性不要输入超过500汉字。字数越多,生成速度越慢,请耐心等待",
                                  )
                model = gr.Radio(choices=list(models.keys()), value=list(models.keys())[0], label='音声模型')
                with gr.Accordion(label="展开设置生成参数", open=False):
                    sdp_ratio = gr.Slider(minimum=0, maximum=1, value=0.2, step=0.01, label='SDP/DP混合比',info='可控制一定程度的语调变化')
                    noise_scale = gr.Slider(minimum=0.1, maximum=1.5, value=0.5, step=0.01, label='感情变化')
                    noise_scale_w = gr.Slider(minimum=0.1, maximum=1.4, value=0.9, step=0.01, label='音节长度')
                    length_scale = gr.Slider(minimum=0.1, maximum=2, value=1, step=0.01, label='生成语音总长度',info='数值越大,语速越慢')
                btn = gr.Button("✨生成", variant="primary")
            with gr.Column():
                audio_output = gr.Audio(label="试听")
                MP3_output = gr.File(label="下载")
                text_output = gr.Textbox(label="调试信息")
                gr.Markdown("""
                
                """)
        btn.click(
                tts_generator,
                inputs=[text, sdp_ratio, noise_scale, noise_scale_w, length_scale, model],
                outputs=[text_output, audio_output,MP3_output]
                )

    app.launch(show_error=True)