File size: 6,635 Bytes
9a85c9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import sys, os

if sys.platform == "darwin":
    os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1"

import logging

logging.getLogger("numba").setLevel(logging.WARNING)
logging.getLogger("markdown_it").setLevel(logging.WARNING)
logging.getLogger("urllib3").setLevel(logging.WARNING)
logging.getLogger("matplotlib").setLevel(logging.WARNING)

logging.basicConfig(level=logging.INFO, format="| %(name)s | %(levelname)s | %(message)s")

logger = logging.getLogger(__name__)

import torch
import argparse
import commons
import utils
from models import SynthesizerTrn
from text.symbols import symbols
from text import cleaned_text_to_sequence, get_bert
from text.cleaner import clean_text
import gradio as gr
import webbrowser
import soundfile as sf
from datetime import datetime
import pytz


net_g = None
models = {
    "AdorableDarling": "./MODELS/adorabledarling.pth",
    "Silverleg": "./MODELS/silverhandG_4400.pth",
    "MoonLucidAloof": "./lMODELS/G_2900.pth",
    "Rrabbitt": "./MODELS/rabbit4900.pth",
    "Mainlade": "./MODELS/DLM.pth",
}

def get_text(text, language_str, hps):
    norm_text, phone, tone, word2ph = clean_text(text, language_str)
    phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str)

    if hps.data.add_blank:
        phone = commons.intersperse(phone, 0)
        tone = commons.intersperse(tone, 0)
        language = commons.intersperse(language, 0)
        for i in range(len(word2ph)):
            word2ph[i] = word2ph[i] * 2
        word2ph[0] += 1
    bert = get_bert(norm_text, word2ph, language_str)
    del word2ph

    assert bert.shape[-1] == len(phone)

    phone = torch.LongTensor(phone)
    tone = torch.LongTensor(tone)
    language = torch.LongTensor(language)

    return bert, phone, tone, language

def infer(text, sdp_ratio, noise_scale, noise_scale_w, length_scale, sid, model_dir):
    global net_g
    bert, phones, tones, lang_ids = get_text(text, "ZH", hps)
    with torch.no_grad():
        x_tst=phones.to(device).unsqueeze(0)
        tones=tones.to(device).unsqueeze(0)
        lang_ids=lang_ids.to(device).unsqueeze(0)
        bert = bert.to(device).unsqueeze(0)
        x_tst_lengths = torch.LongTensor([phones.size(0)]).to(device)
        del phones
        speakers = torch.LongTensor([hps.data.spk2id[sid]]).to(device)
        audio = net_g.infer(x_tst, x_tst_lengths, speakers, tones, lang_ids, bert, sdp_ratio=sdp_ratio
                           , noise_scale=noise_scale, noise_scale_w=noise_scale_w, length_scale=length_scale)[0][0,0].data.cpu().float().numpy()
        del x_tst, tones, lang_ids, bert, x_tst_lengths, speakers
        sf.write("tmp.wav", audio, 44100)
        return audio

def convert_wav_to_mp3(wav_file):
    tz = pytz.timezone('Asia/Shanghai')
    now = datetime.now(tz).strftime('%m%d%H%M%S')
    os.makedirs('out', exist_ok=True)  
    output_path_mp3 = os.path.join('out', f"{now}.mp3")

    renamed_input_path = os.path.join('in', f"in.wav")
    os.makedirs('in', exist_ok=True)
    os.rename(wav_file.name, renamed_input_path)
    command = ["ffmpeg", "-i", renamed_input_path, "-acodec", "libmp3lame", "-y", output_path_mp3]
    os.system(" ".join(command))
    return output_path_mp3
    
def tts_generator(text, speaker, sdp_ratio, noise_scale, noise_scale_w, length_scale, model):
    global net_g
    model_path = models[model]
    net_g, _, _, _ = utils.load_checkpoint(model_path, net_g, None, skip_optimizer=True)
    with torch.no_grad():
        audio = infer(text, sdp_ratio=sdp_ratio, noise_scale=noise_scale, noise_scale_w=noise_scale_w, length_scale=length_scale, sid=speaker,model_dir=model)
    with open('tmp.wav', 'rb') as wav_file:
        mp3 = convert_wav_to_mp3(wav_file)  
    return "生成语音成功", (hps.data.sampling_rate, audio), mp3

if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--model_dir", default="", help="path of your model")
    parser.add_argument("--config_dir", default="./configs/config.json", help="path of your config file")
    parser.add_argument("--share", default=False, help="make link public")
    parser.add_argument("-d", "--debug", action="store_true", help="enable DEBUG-LEVEL log")

    args = parser.parse_args()
    if args.debug:
        logger.info("Enable DEBUG-LEVEL log")
        logging.basicConfig(level=logging.DEBUG)
    hps = utils.get_hparams_from_file(args.config_dir)
    device = "cuda:0" if torch.cuda.is_available() else "cpu"
   
    net_g = SynthesizerTrn(
        len(symbols),
        hps.data.filter_length // 2 + 1,
        hps.train.segment_size // hps.data.hop_length,
        n_speakers=hps.data.n_speakers,
        **hps.model).to(device)
    _ = net_g.eval()


    speaker_ids = hps.data.spk2id
    speakers = list(speaker_ids.keys())

    with gr.Blocks() as app:
        with gr.Row():
            with gr.Column():


                gr.Markdown(value="""
              测试用
                """)
                text = gr.TextArea(label="Text", placeholder="Input Text Here",
                                      value="在不在?能不能借给我三百块钱买可乐",info="使用huggingface的免费CPU进行推理,因此速度不快,一次性不要输入超过500汉字")
                
                model = gr.Radio(choices=list(models.keys()), value=list(models.keys())[0], label='音声模型')
                #model = gr.Dropdown(choices=models,value=models[0], label='音声模型')
                speaker = gr.Radio(choices=speakers, value=speakers[0], label='Speaker')
                gr.Markdown("生成参数,效果玄学")
                sdp_ratio = gr.Slider(minimum=0, maximum=1, value=0.2, step=0.01, label='语调变化')
                noise_scale = gr.Slider(minimum=0.1, maximum=1.5, value=0.5, step=0.01, label='感情变化')
                noise_scale_w = gr.Slider(minimum=0.1, maximum=1.4, value=0.9, step=0.01, label='音节长度')
                length_scale = gr.Slider(minimum=0.1, maximum=2, value=1, step=0.01, label='生成语音总长度')
                btn = gr.Button("生成", variant="primary")
            with gr.Column():
                text_output = gr.Textbox(label="Message")
                audio_output = gr.Audio(label="输出音频")
                MP3_output = gr.File(label="WAV2MP3")
                gr.Markdown(value="""
                
                """)
        btn.click(tts_generator,
                inputs=[text, speaker, sdp_ratio, noise_scale, noise_scale_w, length_scale, model],
                outputs=[text_output, audio_output,MP3_output])
    
        
    app.launch(show_error=True)