Nephele's picture
Update app.py
9e8f9c0
raw
history blame
6.48 kB
import sys, os
import torch
import argparse
import commons
import utils
from models import SynthesizerTrn
from text.symbols import symbols
from text import cleaned_text_to_sequence, get_bert
from text.cleaner import clean_text
import gradio as gr
import soundfile as sf
from datetime import datetime
import pytz
tz = pytz.timezone('Asia/Shanghai')
net_g = None
models = {
"MistyNikki": "./MODELS/nikki9400.pth",
"Silverleg": "./MODELS/J8900.pth",
"Umemura": "./MODELS/take2.pth",
"LucidMoon": "./MODELS/lucid.pth",
"Rrabbitt": "./MODELS/rabbit4900.pth",
"VivaciousViolet": "./MODELS/vv.pth",
"AlluWin": "./MODELS/AW.pth",
"PremJ": "./MODELS/premj.pth",
"ImmenseStar": "./MODELS/endlessstar.pth",
"LightHammer": "./MODELS/hammer.pth",
"ArasakaAI": "Arasaka.pth",
"DLM": "./MODELS/DLM.pth",
"BadGirlDLM": "./MODELS/BG1300.pth",
"BadBoyDLM": "./MODELS/BAD1100.pth",
}
def get_text(text, language_str, hps):
norm_text, phone, tone, word2ph = clean_text(text, language_str)
phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str)
if hps.data.add_blank:
phone = commons.intersperse(phone, 0)
tone = commons.intersperse(tone, 0)
language = commons.intersperse(language, 0)
for i in range(len(word2ph)):
word2ph[i] = word2ph[i] * 2
word2ph[0] += 1
bert = get_bert(norm_text, word2ph, language_str)
del word2ph
assert bert.shape[-1] == len(phone)
phone = torch.LongTensor(phone)
tone = torch.LongTensor(tone)
language = torch.LongTensor(language)
return bert, phone, tone, language
def infer(text, sdp_ratio, noise_scale, noise_scale_w, length_scale, sid, model_dir):
global net_g
bert, phones, tones, lang_ids = get_text(text, "ZH", hps)
with torch.no_grad():
x_tst=phones.to(device).unsqueeze(0)
tones=tones.to(device).unsqueeze(0)
lang_ids=lang_ids.to(device).unsqueeze(0)
bert = bert.to(device).unsqueeze(0)
x_tst_lengths = torch.LongTensor([phones.size(0)]).to(device)
del phones
speakers = torch.LongTensor([hps.data.spk2id[sid]]).to(device)
audio = net_g.infer(x_tst, x_tst_lengths, speakers, tones, lang_ids, bert, sdp_ratio=sdp_ratio
, noise_scale=noise_scale, noise_scale_w=noise_scale_w, length_scale=length_scale)[0][0,0].data.cpu().float().numpy()
del x_tst, tones, lang_ids, bert, x_tst_lengths, speakers
sf.write("tmp.wav", audio, 44100)
return audio
def convert_wav_to_mp3(wav_file):
global tz
now = datetime.now(tz).strftime('%m%d%H%M%S')
os.makedirs('out', exist_ok=True)
output_path_mp3 = os.path.join('out', f"{now}.mp3")
renamed_input_path = os.path.join('in', f"in.wav")
os.makedirs('in', exist_ok=True)
os.rename(wav_file.name, renamed_input_path)
command = ["ffmpeg", "-i", renamed_input_path, "-acodec", "libmp3lame", "-y", output_path_mp3]
os.system(" ".join(command))
return output_path_mp3
def tts_generator(text, sdp_ratio, noise_scale, noise_scale_w, length_scale, model):
global net_g,speakers,tz
now = datetime.now(tz).strftime('%m-%d %H:%M:%S')
model_path = models[model]
net_g, _, _, _ = utils.load_checkpoint(model_path, net_g, None, skip_optimizer=True)
print(now+text)
try:
with torch.no_grad():
audio = infer(text, sdp_ratio=sdp_ratio, noise_scale=noise_scale, noise_scale_w=noise_scale_w, length_scale=length_scale, sid=speaker,model_dir=model)
with open('tmp.wav', 'rb') as wav_file:
mp3 = convert_wav_to_mp3(wav_file)
return "生成语音成功", (hps.data.sampling_rate, audio), mp3
except Exception as e:
return "生成语音失败:" + str(e), None, None
if __name__ == "__main__":
hps = utils.get_hparams_from_file("./configs/config.json")
device = "cuda:0" if torch.cuda.is_available() else "cpu"
net_g = SynthesizerTrn(
len(symbols),
hps.data.filter_length // 2 + 1,
hps.train.segment_size // hps.data.hop_length,
n_speakers=hps.data.n_speakers,
**hps.model).to(device)
_ = net_g.eval()
speaker_ids = hps.data.spk2id
speaker = list(speaker_ids.keys())[0]
theme='remilia/Ghostly'
with gr.Blocks(theme=theme) as app:
with gr.Column():
with gr.Column():
gr.Markdown('''
**仅供测试用**
''')
text = gr.TextArea(label="输入需要生成语音的文字", placeholder="输入文字",
value="在不在?能不能借给我三百块钱买可乐",
info="使用huggingface的免费CPU进行推理,因此速度不快,一次性不要输入超过500汉字。字数越多,生成速度越慢,请耐心等待,只会说中文。",
)
model = gr.Radio(choices=list(models.keys()), value=list(models.keys())[0], label='音声模型')
with gr.Accordion(label="展开设置生成参数", open=False):
sdp_ratio = gr.Slider(minimum=0, maximum=1, value=0.2, step=0.01, label='SDP/DP混合比',info='可控制一定程度的语调变化')
noise_scale = gr.Slider(minimum=0.1, maximum=1.5, value=0.5, step=0.01, label='感情变化')
noise_scale_w = gr.Slider(minimum=0.1, maximum=1.4, value=0.9, step=0.01, label='音节长度')
length_scale = gr.Slider(minimum=0.1, maximum=2, value=1, step=0.01, label='生成语音总长度',info='数值越大,语速越慢')
btn = gr.Button("✨生成", variant="primary")
with gr.Column():
audio_output = gr.Audio(label="试听")
MP3_output = gr.File(label="下载")
text_output = gr.Textbox(label="调试信息")
gr.Markdown("""
""")
btn.click(
tts_generator,
inputs=[text, sdp_ratio, noise_scale, noise_scale_w, length_scale, model],
outputs=[text_output, audio_output,MP3_output]
)
#gr.HTML('''<div align=center><img id="visitor-badge" alt="visitor badge" src="https://visitor-badge.laobi.icu/badge?page_id=Ailyth/DLMP9" /></div>''')
app.launch(show_error=True)