Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 10,673 Bytes
7056bba |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 |
from collections import deque
from typing import Dict, List, Optional
from langchain import LLMChain, OpenAI, PromptTemplate
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.llms import BaseLLM
from langchain.vectorstores import FAISS
from langchain.vectorstores.base import VectorStore
from pydantic import BaseModel, Field
import streamlit as st
class TaskCreationChain(LLMChain):
@classmethod
def from_llm(cls, llm: BaseLLM, objective: str, verbose: bool = True) -> LLMChain:
"""Get the response parser."""
task_creation_template = (
"You are an task creation AI that uses the result of an execution agent"
" to create new tasks with the following objective: {objective},"
" The last completed task has the result: {result}."
" This result was based on this task description: {task_description}."
" These are incomplete tasks: {incomplete_tasks}."
" Based on the result, create new tasks to be completed"
" by the AI system that do not overlap with incomplete tasks."
" Return the tasks as an array."
)
prompt = PromptTemplate(
template=task_creation_template,
partial_variables={"objective": objective},
input_variables=["result", "task_description", "incomplete_tasks"],
)
return cls(prompt=prompt, llm=llm, verbose=verbose)
def get_next_task(self, result: Dict, task_description: str, task_list: List[str]) -> List[Dict]:
"""Get the next task."""
incomplete_tasks = ", ".join(task_list)
response = self.run(result=result, task_description=task_description, incomplete_tasks=incomplete_tasks)
new_tasks = response.split('\n')
return [{"task_name": task_name} for task_name in new_tasks if task_name.strip()]
class TaskPrioritizationChain(LLMChain):
"""Chain to prioritize tasks."""
@classmethod
def from_llm(cls, llm: BaseLLM, objective: str, verbose: bool = True) -> LLMChain:
"""Get the response parser."""
task_prioritization_template = (
"You are an task prioritization AI tasked with cleaning the formatting of and reprioritizing"
" the following tasks: {task_names}."
" Consider the ultimate objective of your team: {objective}."
" Do not remove any tasks. Return the result as a numbered list, like:"
" #. First task"
" #. Second task"
" Start the task list with number {next_task_id}."
)
prompt = PromptTemplate(
template=task_prioritization_template,
partial_variables={"objective": objective},
input_variables=["task_names", "next_task_id"],
)
return cls(prompt=prompt, llm=llm, verbose=verbose)
def prioritize_tasks(self, this_task_id: int, task_list: List[Dict]) -> List[Dict]:
"""Prioritize tasks."""
task_names = [t["task_name"] for t in task_list]
next_task_id = int(this_task_id) + 1
response = self.run(task_names=task_names, next_task_id=next_task_id)
new_tasks = response.split('\n')
prioritized_task_list = []
for task_string in new_tasks:
if not task_string.strip():
continue
task_parts = task_string.strip().split(".", 1)
if len(task_parts) == 2:
task_id = task_parts[0].strip()
task_name = task_parts[1].strip()
prioritized_task_list.append({"task_id": task_id, "task_name": task_name})
return prioritized_task_list
class ExecutionChain(LLMChain):
"""Chain to execute tasks."""
vectorstore: VectorStore = Field(init=False)
@classmethod
def from_llm(cls, llm: BaseLLM, vectorstore: VectorStore, verbose: bool = True) -> LLMChain:
"""Get the response parser."""
execution_template = (
"You are an AI who performs one task based on the following objective: {objective}."
" Take into account these previously completed tasks: {context}."
" Your task: {task}."
" Response:"
)
prompt = PromptTemplate(
template=execution_template,
input_variables=["objective", "context", "task"],
)
return cls(prompt=prompt, llm=llm, verbose=verbose, vectorstore=vectorstore)
def _get_top_tasks(self, query: str, k: int) -> List[str]:
"""Get the top k tasks based on the query."""
results = self.vectorstore.similarity_search_with_score(query, k=k)
if not results:
return []
sorted_results, _ = zip(*sorted(results, key=lambda x: x[1], reverse=True))
return [str(item.metadata['task']) for item in sorted_results]
def execute_task(self, objective: str, task: str, k: int = 5) -> str:
"""Execute a task."""
context = self._get_top_tasks(query=objective, k=k)
return self.run(objective=objective, context=context, task=task)
class Message:
exp: st.expander
ai_icon = "./img/robot.png"
def __init__(self, label: str):
message_area, icon_area = st.columns([10, 1])
icon_area.image(self.ai_icon, caption="BabyAGI")
# Expander
self.exp = message_area.expander(label=label, expanded=True)
def __enter__(self):
return self
def __exit__(self, ex_type, ex_value, trace):
pass
def write(self, content):
self.exp.markdown(content)
class BabyAGI(BaseModel):
"""Controller model for the BabyAGI agent."""
objective: str = Field(alias="objective")
task_list: deque = Field(default_factory=deque)
task_creation_chain: TaskCreationChain = Field(...)
task_prioritization_chain: TaskPrioritizationChain = Field(...)
execution_chain: ExecutionChain = Field(...)
task_id_counter: int = Field(1)
def add_task(self, task: Dict):
self.task_list.append(task)
def print_task_list(self):
with Message(label="Task List") as m:
m.write("### Task List")
for t in self.task_list:
m.write("- " + str(t["task_id"]) + ": " + t["task_name"])
m.write("")
def print_next_task(self, task: Dict):
with Message(label="Next Task") as m:
m.write("### Next Task")
m.write("- " + str(task["task_id"]) + ": " + task["task_name"])
m.write("")
def print_task_result(self, result: str):
with Message(label="Task Result") as m:
m.write("### Task Result")
m.write(result)
m.write("")
def print_task_ending(self):
with Message(label="Task Ending") as m:
m.write("### Task Ending")
m.write("")
def run(self, max_iterations: Optional[int] = None):
"""Run the agent."""
num_iters = 0
while True:
if self.task_list:
self.print_task_list()
# Step 1: Pull the first task
task = self.task_list.popleft()
self.print_next_task(task)
# Step 2: Execute the task
result = self.execution_chain.execute_task(
self.objective, task["task_name"]
)
this_task_id = int(task["task_id"])
self.print_task_result(result)
# Step 3: Store the result in Pinecone
result_id = f"result_{task['task_id']}"
self.execution_chain.vectorstore.add_texts(
texts=[result],
metadatas=[{"task": task["task_name"]}],
ids=[result_id],
)
# Step 4: Create new tasks and reprioritize task list
new_tasks = self.task_creation_chain.get_next_task(
result, task["task_name"], [t["task_name"] for t in self.task_list]
)
for new_task in new_tasks:
self.task_id_counter += 1
new_task.update({"task_id": self.task_id_counter})
self.add_task(new_task)
self.task_list = deque(
self.task_prioritization_chain.prioritize_tasks(
this_task_id, list(self.task_list)
)
)
num_iters += 1
if max_iterations is not None and num_iters == max_iterations:
self.print_task_ending()
break
@classmethod
def from_llm_and_objectives(
cls,
llm: BaseLLM,
vectorstore: VectorStore,
objective: str,
first_task: str,
verbose: bool = False,
) -> "BabyAGI":
"""Initialize the BabyAGI Controller."""
task_creation_chain = TaskCreationChain.from_llm(
llm, objective, verbose=verbose
)
task_prioritization_chain = TaskPrioritizationChain.from_llm(
llm, objective, verbose=verbose
)
execution_chain = ExecutionChain.from_llm(llm, vectorstore, verbose=verbose)
controller = cls(
objective=objective,
task_creation_chain=task_creation_chain,
task_prioritization_chain=task_prioritization_chain,
execution_chain=execution_chain,
)
controller.add_task({"task_id": 1, "task_name": first_task})
return controller
def main():
st.set_page_config(
initial_sidebar_state="expanded",
page_title="BabyAGI Streamlit",
layout="centered",
)
with st.sidebar:
openai_api_key = st.text_input('Your OpenAI API KEY', type="password")
st.title("BabyAGI Streamlit")
objective = st.text_input("Input Ultimate goal", "Solve world hunger")
first_task = st.text_input("Input Where to start", "Develop a task list")
max_iterations = st.number_input("Max iterations", value=3, min_value=1, step=1)
button = st.button("Run")
embedding_model = HuggingFaceEmbeddings()
vectorstore = FAISS.from_texts(["_"], embedding_model, metadatas=[{"task":first_task}])
if button:
try:
baby_agi = BabyAGI.from_llm_and_objectives(
llm=OpenAI(openai_api_key=openai_api_key),
vectorstore=vectorstore,
objective=objective,
first_task=first_task,
verbose=False
)
baby_agi.run(max_iterations=max_iterations)
except Exception as e:
st.error(e)
if __name__ == "__main__":
main()
|