IIT_ChatBot / app.py
Nevidu's picture
Rename App.py to app.py
e45feb4 verified
import gradio as gr
import numpy as np
from sklearn.metrics.pairwise import cosine_similarity
# from sklearn.decomposition import PCA
from langchain_community.llms import Ollama
from langchain_chroma import Chroma
import langchain
from langchain_community.document_loaders import DirectoryLoader, TextLoader, PyPDFLoader
from langchain_experimental.text_splitter import SemanticChunker
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.embeddings.ollama import OllamaEmbeddings
from typing import List, Dict
from langchain.docstore.document import Document
from transformers import T5Tokenizer, T5ForConditionalGeneration
tokenizer = T5Tokenizer.from_pretrained("Voicelab/vlt5-base-keywords")
model = T5ForConditionalGeneration.from_pretrained("Voicelab/vlt5-base-keywords")
vectorstore = Chroma(
# docs,
embedding_function=OllamaEmbeddings(model = "gemma:2b"),
persist_directory="chroma_db"
)
print(vectorstore.similarity_search_with_score("Course Leader"))
llm = Ollama(
model="llama3.2:3b"
)
def retrieve_relevant_chunks(
vector_store: Chroma,
query: str,
n_docs: int = 2,
chunks_per_doc: int = 5
) -> Dict[str, List[Document]]:
# Get more results initially to ensure we have enough unique documents
results = vector_store.similarity_search_with_score(
query,
k=50 # Fetch more to ensure we have enough unique documents
)
# Group results by document ID
doc_chunks: Dict[str, List[tuple]] = {}
for doc, score in results:
doc_id = doc.metadata.get('source', '') # or use appropriate metadata field
if doc_id:
if doc_id not in doc_chunks:
doc_chunks[doc_id] = []
doc_chunks[doc_id].append((doc, score))
# Sort documents by their best matching chunk's score
sorted_docs = sorted(
doc_chunks.items(),
key=lambda x: min(chunk[1] for chunk in x[1])
)
# Take only the top n_docs documents
top_docs = sorted_docs[:n_docs]
# For each top document, get the best chunks_per_doc chunks
final_results: Dict[str, List[Document]] = {}
for doc_id, chunks in top_docs:
# Sort chunks by score (relevance)
sorted_chunks = sorted(chunks, key=lambda x: x[1])
# Take only the specified number of chunks and store just the Document objects
final_results[doc_id] = [chunk[0] for chunk in sorted_chunks[:chunks_per_doc]]
return final_results
def display_results(results: Dict[str, List[str]]) -> None:
"""
Display the retrieved chunks in a formatted way.
Args:
results: Dictionary mapping document IDs to lists of text chunks
"""
prompt = " "
for doc_id, chunks in results.items():
# prompt += f"\nDocument ID: {doc_id}\n"
prompt += "-" * 50
for i, chunk in enumerate(chunks, 1):
# prompt += f"\nChunk {i}:"
prompt += str(chunk) + "\n"
# prompt += "-" * 30
return prompt
def main(query):
# Initialize your vector store (example)
# vector_store = Chroma(
# persist_directory="path/to/your/vectorstore",
# embedding_function=your_embedding_function
# )
upd_query = "Keyword: " + query
input_ids = tokenizer.encode(upd_query, return_tensors="pt")
outputs = model.generate(input_ids)
output_sequence = tokenizer.decode(outputs[0], skip_special_tokens=True)
# print(output_sequence)
result_list = list(set(item.strip() for item in output_sequence.split(',')))
# print(result_list)
output_string = ", ".join(result_list)
print(output_string)
try:
results = retrieve_relevant_chunks(
vector_store=vectorstore,
query=output_string,
n_docs=2,
chunks_per_doc=5
)
prompt = display_results(results)
except Exception as e:
print(f"Error: {str(e)}")
formatted_prompt = f"""
You are an AI assistant. Your goal is to answer questions regarding student handbooks based on the following context provided. Make sure all the answers are within the given context:
{prompt}
Based on the above, answer the following question:
{query}
Give the answer in a clear and concise manner
"""
response = llm.predict(formatted_prompt)
return response
with gr.Blocks() as demo:
#gr.Image("../Documentation/Context Diagram.png", scale=2)
#gr(title="Your Interface Title")
gr.Markdown("""
<center>
<span style='font-size: 50px; font-weight: Bold; font-family: "Graduate", serif'>
IIT RAG Student Handbooks
</span>
</center>
""")
with gr.Group():
query = gr.Textbox(label="Question")
answer = gr.Textbox(label="Answer")
with gr.Row():
login_btn = gr.Button(value="Generate")
login_btn.click(main, inputs=[query], outputs=answer)
# demo.launch(share = True, auth=authenticate)
demo.launch(share = True)