Nevidu commited on
Commit
229eff2
·
verified ·
1 Parent(s): b3afa61

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +18 -10
app.py CHANGED
@@ -4,18 +4,19 @@ import pandas as pd
4
  import pickle
5
  import xgboost as xgb
6
 
7
- def predict(team, inning, venue, hits, errors, leftonbase, runs):
8
 
9
- data = [team, inning, venue, hits, errors, runs, leftonbase]
10
- df = pd.DataFrame([data], columns=["Team_Name", "Inning", "Home/Away", "Hits", "Errors", "Runs", "Leftonbase"])
11
 
12
  xgb_model = xgb.XGBRegressor()
13
- xgb_model.load_model('xgbr3_model3.json')
14
 
15
  with open('label_encoder_teams3.pkl', 'rb') as f:
16
  label_encoder = pickle.load(f)
17
 
18
- df['Team_Name'] = label_encoder.fit_transform(df['Team_Name'])
 
19
 
20
  home_away_status = {'Home': 0, 'Away': 1}
21
  df['Home/Away'] = df['Home/Away'].map(home_away_status)
@@ -77,11 +78,11 @@ with gr.Blocks() as demo:
77
  inning = gr.Number(None, label="Inning", minimum = 1, maximum = 8, scale=1)
78
 
79
  with gr.Row():
80
- # with gr.Column():
81
- venue = gr.Dropdown(choices = ["Home", "Away"], max_choices = 1, label="Home/Away Status", scale=1)
82
 
83
- # with gr.Column():
84
- hits = gr.Number(None, minimum=0, label="Hits - (H)", scale=1)
85
 
86
  # summarize_btn = gr.Button(value="Summarize Text", size = 'sm')
87
 
@@ -92,12 +93,19 @@ with gr.Blocks() as demo:
92
 
93
  runs = gr.Number(None, minimum=0, label="Runs - (R)", scale=1)
94
 
 
 
 
 
 
 
 
95
  with gr.Row():
96
  predict_btn = gr.Button(value="Predict", size = 'sm')
97
 
98
  with gr.Row():
99
  final_score = gr.Textbox(label="Predicted Score", scale=1)
100
  # patent_doc.upload(document_to_text, inputs = [patent_doc, slider, select_model], outputs=summary_doc)
101
- predict_btn.click(predict, inputs=[team, inning, venue, hits, errors, leftonbase, runs], outputs=final_score)
102
 
103
  demo.launch(inline=False)
 
4
  import pickle
5
  import xgboost as xgb
6
 
7
+ def predict(team, inning, venue, hits, errors, leftonbase, runs, opp_team, opp_runs):
8
 
9
+ data = [team, inning, venue, hits, errors, runs, leftonbase, opp_team, opp_runs]
10
+ df = pd.DataFrame([data], columns=["Team_Name", "Inning", "Home/Away", "Hits", "Errors", "Runs", "Leftonbase", "Opposition_Team", "Opp_Runs"])
11
 
12
  xgb_model = xgb.XGBRegressor()
13
+ xgb_model.load_model('xgbr3_model3_exp5.json')
14
 
15
  with open('label_encoder_teams3.pkl', 'rb') as f:
16
  label_encoder = pickle.load(f)
17
 
18
+ df['Team_Name'] = label_encoder.transform(df['Team_Name'])
19
+ df['Opposition_Team'] = label_encoder.transform(df['Opposition_Team'])
20
 
21
  home_away_status = {'Home': 0, 'Away': 1}
22
  df['Home/Away'] = df['Home/Away'].map(home_away_status)
 
78
  inning = gr.Number(None, label="Inning", minimum = 1, maximum = 8, scale=1)
79
 
80
  with gr.Row():
81
+ with gr.Column():
82
+ venue = gr.Dropdown(choices = ["Home", "Away"], max_choices = 1, label="Home/Away Status", scale=1)
83
 
84
+ with gr.Column():
85
+ hits = gr.Number(None, minimum=0, label="Hits - (H)", scale=1)
86
 
87
  # summarize_btn = gr.Button(value="Summarize Text", size = 'sm')
88
 
 
93
 
94
  runs = gr.Number(None, minimum=0, label="Runs - (R)", scale=1)
95
 
96
+ with gr.Row():
97
+ with gr.Column():
98
+ opp_team = gr.Dropdown(choices = team_names, max_choices = 1, label="Opposition Team", scale=1)
99
+
100
+ with gr.Column():
101
+ opp_runs = gr.Number(None, minimum=0, label="Opposition Runs - (R)", scale=1)
102
+
103
  with gr.Row():
104
  predict_btn = gr.Button(value="Predict", size = 'sm')
105
 
106
  with gr.Row():
107
  final_score = gr.Textbox(label="Predicted Score", scale=1)
108
  # patent_doc.upload(document_to_text, inputs = [patent_doc, slider, select_model], outputs=summary_doc)
109
+ predict_btn.click(predict, inputs=[team, inning, venue, hits, errors, leftonbase, runs, opp_team, opp_runs], outputs=final_score)
110
 
111
  demo.launch(inline=False)