Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -3,15 +3,16 @@ import numpy as np
|
|
3 |
import pandas as pd
|
4 |
import pickle
|
5 |
import xgboost as xgb
|
|
|
6 |
|
7 |
def predict(team, inning, venue, hits, errors, lob, runs, opp_team, opp_runs, opp_hits):
|
8 |
data = [team, opp_team, inning, venue, hits, opp_hits, errors, runs, opp_runs, lob]
|
9 |
df = pd.DataFrame([data], columns=["Team_Name", "Opposition_Team", "Inning", "Home/Away", "Hits", "Opp_Hits", "Errors", "Runs", "Opp_Runs", "LOB"])
|
10 |
|
11 |
xgb_model = xgb.XGBRegressor()
|
12 |
-
xgb_model.load_model('
|
13 |
|
14 |
-
with open('
|
15 |
label_encoder = pickle.load(f)
|
16 |
|
17 |
df['Team_Name'] = label_encoder.transform(df['Team_Name'])
|
@@ -20,6 +21,30 @@ def predict(team, inning, venue, hits, errors, lob, runs, opp_team, opp_runs, op
|
|
20 |
home_away_status = {'Home': 0, 'Away': 1}
|
21 |
df['Home/Away'] = df['Home/Away'].map(home_away_status)
|
22 |
score = xgb_model.predict(df)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
return np.round(score[0],1)
|
24 |
|
25 |
team_names = ["Arizona Diamondbacks",
|
@@ -71,17 +96,30 @@ with gr.Blocks() as demo:
|
|
71 |
# </center>
|
72 |
# """)
|
73 |
with gr.Row():
|
74 |
-
|
|
|
|
|
|
|
|
|
|
|
75 |
|
76 |
with gr.Column():
|
77 |
-
|
|
|
78 |
|
79 |
with gr.Row():
|
80 |
with gr.Column():
|
81 |
-
|
82 |
-
|
|
|
|
|
|
|
|
|
83 |
with gr.Column():
|
84 |
hits = gr.Number(None, minimum=0, label="Hits - (H)", scale=1)
|
|
|
|
|
|
|
85 |
|
86 |
# summarize_btn = gr.Button(value="Summarize Text", size = 'sm')
|
87 |
|
@@ -90,30 +128,46 @@ with gr.Blocks() as demo:
|
|
90 |
errors = gr.Number(None, minimum=0, label="Errors - (E)", scale=2)
|
91 |
|
92 |
with gr.Column():
|
93 |
-
|
94 |
|
95 |
# runs = gr.Number(None, minimum=0, label="Runs - (R)", scale=1)
|
96 |
|
97 |
with gr.Row():
|
98 |
with gr.Column():
|
99 |
-
|
100 |
-
|
101 |
with gr.Column():
|
102 |
-
|
103 |
|
104 |
with gr.Row():
|
105 |
with gr.Column():
|
106 |
-
|
107 |
-
|
108 |
with gr.Column():
|
109 |
-
|
110 |
|
111 |
with gr.Row():
|
112 |
predict_btn = gr.Button(value="Predict", size = 'sm')
|
113 |
|
114 |
with gr.Row():
|
115 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
# patent_doc.upload(document_to_text, inputs = [patent_doc, slider, select_model], outputs=summary_doc)
|
117 |
-
predict_btn.click(predict, inputs=[team, inning, venue, hits, errors, lob, runs, opp_team, opp_runs, opp_hits], outputs=
|
|
|
|
|
|
|
|
|
118 |
|
119 |
demo.launch(inline=False)
|
|
|
3 |
import pandas as pd
|
4 |
import pickle
|
5 |
import xgboost as xgb
|
6 |
+
from catboost import CatBoostRegressor
|
7 |
|
8 |
def predict(team, inning, venue, hits, errors, lob, runs, opp_team, opp_runs, opp_hits):
|
9 |
data = [team, opp_team, inning, venue, hits, opp_hits, errors, runs, opp_runs, lob]
|
10 |
df = pd.DataFrame([data], columns=["Team_Name", "Opposition_Team", "Inning", "Home/Away", "Hits", "Opp_Hits", "Errors", "Runs", "Opp_Runs", "LOB"])
|
11 |
|
12 |
xgb_model = xgb.XGBRegressor()
|
13 |
+
xgb_model.load_model('alpha1_xgbr1.json')
|
14 |
|
15 |
+
with open('label_encoder_teams_alpha1_xgbr1.pkl', 'rb') as f:
|
16 |
label_encoder = pickle.load(f)
|
17 |
|
18 |
df['Team_Name'] = label_encoder.transform(df['Team_Name'])
|
|
|
21 |
home_away_status = {'Home': 0, 'Away': 1}
|
22 |
df['Home/Away'] = df['Home/Away'].map(home_away_status)
|
23 |
score = xgb_model.predict(df)
|
24 |
+
if score[0] < 0:
|
25 |
+
score = np.clip(score[0], a_min=0, a_max=None)
|
26 |
+
return np.round(score,1)
|
27 |
+
return np.round(score[0],1)
|
28 |
+
|
29 |
+
def predict_2(team, inning, venue, hits, errors, lob, runs, opp_team, opp_runs, opp_hits):
|
30 |
+
data = [team, opp_team, inning, venue, hits, opp_hits, errors, runs, opp_runs, lob]
|
31 |
+
df = pd.DataFrame([data], columns=["Team_Name", "Opposition_Team", "Inning", "Home/Away", "Hits", "Opp_Hits", "Errors", "Runs", "Opp_Runs", "LOB"])
|
32 |
+
|
33 |
+
cat_model = CatBoostRegressor()
|
34 |
+
cat_model.load_model('CATBR1_model1_exp1.json')
|
35 |
+
|
36 |
+
with open('label_encoder_teams_catbr1_exp1.pkl', 'rb') as f:
|
37 |
+
label_encoder = pickle.load(f)
|
38 |
+
|
39 |
+
df['Team_Name'] = label_encoder.transform(df['Team_Name'])
|
40 |
+
df['Opposition_Team'] = label_encoder.transform(df['Opposition_Team'])
|
41 |
+
|
42 |
+
home_away_status = {'Home': 0, 'Away': 1}
|
43 |
+
df['Home/Away'] = df['Home/Away'].map(home_away_status)
|
44 |
+
score = cat_model.predict(df)
|
45 |
+
if score[0] < 0:
|
46 |
+
score = np.clip(score[0], a_min=0, a_max=None)
|
47 |
+
return np.round(score,1)
|
48 |
return np.round(score[0],1)
|
49 |
|
50 |
team_names = ["Arizona Diamondbacks",
|
|
|
96 |
# </center>
|
97 |
# """)
|
98 |
with gr.Row():
|
99 |
+
inning = gr.Number(None, label="Inning", minimum = 1, maximum = 8, scale=1)
|
100 |
+
|
101 |
+
with gr.Row():
|
102 |
+
with gr.Column():
|
103 |
+
venue = gr.Dropdown(choices = ["Home", "Away"], value="Away", max_choices = 1, label="Home/Away Status", scale=1)
|
104 |
+
|
105 |
|
106 |
with gr.Column():
|
107 |
+
opp_venue = gr.Dropdown(choices = ["Home", "Away"], value="Home", max_choices = 1, label="Opposition Home/Away Status", scale=1)
|
108 |
+
|
109 |
|
110 |
with gr.Row():
|
111 |
with gr.Column():
|
112 |
+
team = gr.Dropdown(choices = team_names, max_choices = 1, label="Team", scale=1)
|
113 |
+
|
114 |
+
with gr.Column():
|
115 |
+
opp_team = gr.Dropdown(choices = team_names, max_choices = 1, label="Opposition Team", scale=1)
|
116 |
+
|
117 |
+
with gr.Row():
|
118 |
with gr.Column():
|
119 |
hits = gr.Number(None, minimum=0, label="Hits - (H)", scale=1)
|
120 |
+
|
121 |
+
with gr.Column():
|
122 |
+
opp_hits = gr.Number(None, minimum=0, label="Opposition Hits - (H)", scale=1)
|
123 |
|
124 |
# summarize_btn = gr.Button(value="Summarize Text", size = 'sm')
|
125 |
|
|
|
128 |
errors = gr.Number(None, minimum=0, label="Errors - (E)", scale=2)
|
129 |
|
130 |
with gr.Column():
|
131 |
+
opp_errors = gr.Number(None, minimum=0, label="Opposition Errors - (E)", scale=2)
|
132 |
|
133 |
# runs = gr.Number(None, minimum=0, label="Runs - (R)", scale=1)
|
134 |
|
135 |
with gr.Row():
|
136 |
with gr.Column():
|
137 |
+
lob = gr.Number(None, minimum=0, label="Left on Base - (LOB)", scale=1)
|
138 |
+
|
139 |
with gr.Column():
|
140 |
+
opp_lob = gr.Number(None, minimum=0, label="Opposition Left on Base - (LOB)", scale=1)
|
141 |
|
142 |
with gr.Row():
|
143 |
with gr.Column():
|
144 |
+
runs = gr.Number(None, minimum=0, label="Runs - (R)", scale=1)
|
145 |
+
|
146 |
with gr.Column():
|
147 |
+
opp_runs = gr.Number(None, minimum=0, label="Opposition Runs - (R)", scale=1)
|
148 |
|
149 |
with gr.Row():
|
150 |
predict_btn = gr.Button(value="Predict", size = 'sm')
|
151 |
|
152 |
with gr.Row():
|
153 |
+
with gr.Column():
|
154 |
+
final_score_away1 = gr.Textbox(label="Predicted Score Model XGB", scale=1)
|
155 |
+
|
156 |
+
with gr.Column():
|
157 |
+
final_score_home1 = gr.Textbox(label="Opposition Predicted Score Model XGB", scale=1)
|
158 |
+
|
159 |
+
with gr.Row():
|
160 |
+
with gr.Column():
|
161 |
+
final_score_away2 = gr.Textbox(label="Predicted Score Model CATB", scale=1)
|
162 |
+
|
163 |
+
with gr.Column():
|
164 |
+
final_score_home2 = gr.Textbox(label="Opposition Predicted Score Model CATB", scale=1)
|
165 |
+
|
166 |
# patent_doc.upload(document_to_text, inputs = [patent_doc, slider, select_model], outputs=summary_doc)
|
167 |
+
predict_btn.click(predict, inputs=[team, inning, venue, hits, errors, lob, runs, opp_team, opp_runs, opp_hits], outputs=final_score_away1)
|
168 |
+
predict_btn.click(predict, inputs=[opp_team, inning, opp_venue, opp_hits, opp_errors, opp_lob, opp_runs, team, runs, hits], outputs=final_score_home1)
|
169 |
+
|
170 |
+
predict_btn.click(predict_2, inputs=[team, inning, venue, hits, errors, lob, runs, opp_team, opp_runs, opp_hits], outputs=final_score_away2)
|
171 |
+
predict_btn.click(predict_2, inputs=[opp_team, inning, opp_venue, opp_hits, opp_errors, opp_lob, opp_runs, team, runs, hits], outputs=final_score_home2)
|
172 |
|
173 |
demo.launch(inline=False)
|