Nevidu commited on
Commit
d7b1ed3
·
verified ·
1 Parent(s): 8d55bfb

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +38 -11
app.py CHANGED
@@ -7,19 +7,32 @@ from catboost import CatBoostRegressor
7
 
8
  def predict(team, inning, venue, hits, errors, lob, runs, opp_team, opp_runs, opp_hits):
9
  data = [team, opp_team, inning, venue, hits, opp_hits, errors, runs, opp_runs, lob]
 
 
 
 
 
10
  df = pd.DataFrame([data], columns=["Team_Name", "Opposition_Team", "Inning", "Home/Away", "Hits", "Opp_Hits", "Errors", "Runs", "Opp_Runs", "LOB"])
 
11
 
 
 
 
 
12
  xgb_model = xgb.XGBRegressor()
13
- xgb_model.load_model('alpha1_xgbr1.json')
14
 
15
- with open('label_encoder_teams_alpha1_xgbr1.pkl', 'rb') as f:
16
- label_encoder = pickle.load(f)
17
-
18
- df['Team_Name'] = label_encoder.transform(df['Team_Name'])
19
- df['Opposition_Team'] = label_encoder.transform(df['Opposition_Team'])
20
 
 
 
 
21
  home_away_status = {'Home': 0, 'Away': 1}
22
  df['Home/Away'] = df['Home/Away'].map(home_away_status)
 
 
 
23
  score = xgb_model.predict(df)
24
  if score[0] < 0:
25
  score = np.clip(score[0], a_min=0, a_max=None)
@@ -28,19 +41,33 @@ def predict(team, inning, venue, hits, errors, lob, runs, opp_team, opp_runs, op
28
 
29
  def predict_2(team, inning, venue, hits, errors, lob, runs, opp_team, opp_runs, opp_hits):
30
  data = [team, opp_team, inning, venue, hits, opp_hits, errors, runs, opp_runs, lob]
 
 
 
 
 
31
  df = pd.DataFrame([data], columns=["Team_Name", "Opposition_Team", "Inning", "Home/Away", "Hits", "Opp_Hits", "Errors", "Runs", "Opp_Runs", "LOB"])
 
 
 
32
 
33
  cat_model = CatBoostRegressor()
34
- cat_model.load_model('CATBR1_model1_exp1.json')
35
 
36
- with open('label_encoder_teams_catbr1_exp1.pkl', 'rb') as f:
37
- label_encoder = pickle.load(f)
38
 
39
- df['Team_Name'] = label_encoder.transform(df['Team_Name'])
40
- df['Opposition_Team'] = label_encoder.transform(df['Opposition_Team'])
41
 
42
  home_away_status = {'Home': 0, 'Away': 1}
43
  df['Home/Away'] = df['Home/Away'].map(home_away_status)
 
 
 
 
 
 
44
  score = cat_model.predict(df)
45
  if score[0] < 0:
46
  score = np.clip(score[0], a_min=0, a_max=None)
 
7
 
8
  def predict(team, inning, venue, hits, errors, lob, runs, opp_team, opp_runs, opp_hits):
9
  data = [team, opp_team, inning, venue, hits, opp_hits, errors, runs, opp_runs, lob]
10
+
11
+ df_main = pd.read_csv("Score_prediction_dataset_11th_July.csv")
12
+ df_main = df_main.drop(columns=['Final_Score', 'Opp_LOB'])
13
+ df_main = pd.get_dummies(df_main, columns=['Team_Name', 'Opposition_Team'])
14
+
15
  df = pd.DataFrame([data], columns=["Team_Name", "Opposition_Team", "Inning", "Home/Away", "Hits", "Opp_Hits", "Errors", "Runs", "Opp_Runs", "LOB"])
16
+ df = pd.get_dummies(df, columns=['Team_Name', 'Opposition_Team'])
17
 
18
+ df = df.reindex(columns=df_main.columns, fill_value=0)
19
+
20
+ # print(df.columns)
21
+ # print(len(df.columns))
22
  xgb_model = xgb.XGBRegressor()
23
+ xgb_model.load_model('xgbr1_exp3_model.json')
24
 
25
+ with open('pca_model1.pkl', 'rb') as f:
26
+ pca = pickle.load(f)
 
 
 
27
 
28
+ # with open('label_encoder_teams_xgbr1_exp3.pkl', 'rb') as f:
29
+ # label_encoder = pickle.load(f)
30
+
31
  home_away_status = {'Home': 0, 'Away': 1}
32
  df['Home/Away'] = df['Home/Away'].map(home_away_status)
33
+
34
+ df = pca.transform(df)
35
+
36
  score = xgb_model.predict(df)
37
  if score[0] < 0:
38
  score = np.clip(score[0], a_min=0, a_max=None)
 
41
 
42
  def predict_2(team, inning, venue, hits, errors, lob, runs, opp_team, opp_runs, opp_hits):
43
  data = [team, opp_team, inning, venue, hits, opp_hits, errors, runs, opp_runs, lob]
44
+
45
+ df_main = pd.read_csv("Score_prediction_dataset_11th_July.csv")
46
+ df_main = df_main.drop(columns=['Final_Score', 'Opp_LOB'])
47
+ df_main = pd.get_dummies(df_main, columns=['Team_Name', 'Opposition_Team'])
48
+
49
  df = pd.DataFrame([data], columns=["Team_Name", "Opposition_Team", "Inning", "Home/Away", "Hits", "Opp_Hits", "Errors", "Runs", "Opp_Runs", "LOB"])
50
+ df = pd.get_dummies(df, columns=['Team_Name', 'Opposition_Team'])
51
+
52
+ df = df.reindex(columns=df_main.columns, fill_value=0)
53
 
54
  cat_model = CatBoostRegressor()
55
+ cat_model.load_model('catbr1_exp4_model.json')
56
 
57
+ # with open('label_encoder_teams_catbr1_exp1.pkl', 'rb') as f:
58
+ # label_encoder = pickle.load(f)
59
 
60
+ # df['Team_Name'] = label_encoder.transform(df['Team_Name'])
61
+ # df['Opposition_Team'] = label_encoder.transform(df['Opposition_Team'])
62
 
63
  home_away_status = {'Home': 0, 'Away': 1}
64
  df['Home/Away'] = df['Home/Away'].map(home_away_status)
65
+
66
+ with open('pca_model1.pkl', 'rb') as f:
67
+ pca = pickle.load(f)
68
+
69
+ df = pca.transform(df)
70
+
71
  score = cat_model.predict(df)
72
  if score[0] < 0:
73
  score = np.clip(score[0], a_min=0, a_max=None)