File size: 11,668 Bytes
d8b259c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05e2e83
d8b259c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
import gradio as gr
import numpy as np
import pandas as pd
import pickle
import xgboost as xgb
from catboost import CatBoostRegressor
import mlbstatsapi
import tensorflow as tf


pd.set_option('display.max_columns', None)
# pd.set_option('display.max_rows', None)

def predict(inning, game_id):

    if inning == "Seven":
        inning = 7
    elif inning == "Eight":
        inning = 8
    elif inning == "Five":
        inning = 5
    elif inning == "Six":
        inning = 6
    
    df = data_retrieve(inning, game_id)
    # print(df)

    df_home = df[df['Home/Away'] == "Home"]
    df_away = df[df['Home/Away'] == "Away"]
    
    if (len(df_home) < inning) or (len(df_away) < inning):
        return [None, None]

    # print(df_home)

    df_main = pd.read_csv("Score_prediction_dataset_25th_August_TS_3seas.csv")
    df_main = df_main.drop(columns=['Opp_LOB'])
    df_main = df_main[(df_main['Inning'] <= inning)]

    df_main = df_main[df_main['Team_Name'].isin(team_names)]
    df_main = df_main[df_main['Opposition_Team'].isin(team_names)]

    df_main = df_main[(df_main['Team_Name'] != 'American League All-Stars') & (df_main['Team_Name'] != 'National League All-Stars')]
    df_main = df_main.dropna()
    df_main = df_main.drop_duplicates()

    df_main = df_main.pivot(index=['Game_ID', 'Team_Name', 'Opposition_Team', 'Home/Away', 'Final_Score'], columns='Inning', values=['Hits', 'Opp_Hits', 'Errors', 'Runs', 'Opp_Runs', 'LOB'])
    df_main.columns = [f'{feature}_{inning}' for feature, inning in df_main.columns]
    df_main = df_main.reset_index()
    df_main = df_main.drop(columns=['Final_Score'])
    df_main = pd.get_dummies(df_main, columns=['Team_Name', 'Opposition_Team'])

    # df = pd.DataFrame([data], columns=["Team_Name", "Opposition_Team", "Inning", "Home/Away", "Hits", "Opp_Hits", "Errors", "Runs", "Opp_Runs", "LOB"])

    pivoted_df_home = df_home.pivot(index=['Game_ID', 'Team_Name', 'Opposition_Team', 'Home/Away', 'Final_Score'], columns='Inning', values=['Hits', 'Opp_Hits', 'Errors', 'Runs', 'Opp_Runs', 'LOB'])
    pivoted_df_home.columns = [f'{feature}_{inning}' for feature, inning in pivoted_df_home.columns]
    # print(pivoted_df_home)
    pivoted_df_home = pivoted_df_home.reset_index()

    pivoted_df_home = pd.get_dummies(pivoted_df_home, columns=['Team_Name', 'Opposition_Team'])
    pivoted_df_home = pivoted_df_home.reindex(columns=df_main.columns, fill_value=0)

    pivoted_df_away = df_away.pivot(index=['Game_ID', 'Team_Name', 'Opposition_Team', 'Home/Away', 'Final_Score'], columns='Inning', values=['Hits', 'Opp_Hits', 'Errors', 'Runs', 'Opp_Runs', 'LOB'])
    pivoted_df_away.columns = [f'{feature}_{inning}' for feature, inning in pivoted_df_away.columns]
    pivoted_df_away = pivoted_df_away.reset_index()

    pivoted_df_away = pd.get_dummies(pivoted_df_away, columns=['Team_Name', 'Opposition_Team'])
    pivoted_df_away = pivoted_df_away.reindex(columns=df_main.columns, fill_value=0)

    print(pivoted_df_home)
    home_away_status = {'Home': 0, 'Away': 1}
    pivoted_df_home['Home/Away'] = pivoted_df_home['Home/Away'].map(home_away_status)
    pivoted_df_away['Home/Away'] = pivoted_df_away['Home/Away'].map(home_away_status)

    pivoted_df_home = pivoted_df_home.astype(int)
    pivoted_df_away = pivoted_df_away.astype(int)

    pivoted_df_home = pivoted_df_home.drop(['Game_ID'], axis=1)
    pivoted_df_away = pivoted_df_away.drop(['Game_ID'], axis=1)

    # return

    # print(len(df.columns))
    if inning == 8:
        model = tf.keras.models.load_model('ANNR_ts_CLAS_inn8_exp8_model.keras')
    elif inning ==7:
        model = tf.keras.models.load_model('ANNR_ts_CLAS_inn7_exp11_model.keras')
    elif inning ==6:
        model = tf.keras.models.load_model('ANNR_ts_CLAS_inn6_exp7_model.keras')
    elif inning ==5:
        model = tf.keras.models.load_model('ANNR_ts_CLAS_inn5_exp4_model.keras')
    

    # with open('pca_model4.pkl', 'rb') as f:
    #     pca = pickle.load(f)

    # with open('label_encoder_teams_xgbr1_exp3.pkl', 'rb') as f:
    #     label_encoder = pickle.load(f)
    
    # print(pivoted_df_home)

    # df = pca.transform(df)
    # return
    winner_prob_1 = model.predict(pivoted_df_home)
    winner__prob_2 = model.predict(pivoted_df_away)


    if winner_prob_1 < winner__prob_2:
        winner = 'Home_Team'
    else:
        winner = 'Away_Team'
        # return score_1
    
    return winner

def data_retrieve(inning, game_id):
    mlb = mlbstatsapi.Mlb()
    df = pd.DataFrame(columns = ["Game_ID", "Team_Name", "Opposition_Team", "Inning", "Home/Away", "Hits", "Opp_Hits", "Errors", "Runs", "Opp_Runs", "LOB", "Opp_LOB", "Final_Score"])

    try:
        linescore = mlb.get_game_line_score(game_id, verify = False)
    except:
        gr.Info("Error retrieving data!!!")
    
    home_runs = 0
    away_runs = 0
    home_hits = 0
    away_hits = 0
    home_errors = 0
    away_errors = 0
    home_leftonbase = 0
    away_leftonbase = 0
    count = 0
    for i in range(inning):
        try:
            inning = linescore.innings[i].num
            home_team_name = mlb.get_game_box_score(game_id, verify = False).teams.home.team.name
            away_team_name = mlb.get_game_box_score(game_id, verify = False).teams.away.team.name
            
            home_runs += linescore.innings[i].home.runs
            away_runs += linescore.innings[i].away.runs
            home_hits += linescore.innings[i].home.hits
            away_hits += linescore.innings[i].away.hits
            home_errors += linescore.innings[i].home.errors
            away_errors += linescore.innings[i].away.errors
            home_leftonbase += linescore.innings[i].home.leftonbase
            away_leftonbase += linescore.innings[i].away.leftonbase

            home_score = linescore.teams.home.runs
            away_score = linescore.teams.away.runs
        except:
            gr.Info(f"Error retrieving inning {i+1} data!!!")
            continue

        home_dict = {"Game_ID": game_id, "Team_Name": home_team_name, "Opposition_Team": away_team_name, "Inning": inning, "Home/Away": 'Home', "Hits": home_hits, "Opp_Hits": away_hits, "Errors": home_errors, "Runs": home_runs, "Opp_Runs": away_runs, "LOB": home_leftonbase, "Opp_LOB": away_leftonbase, "Final_Score": home_score}
        away_dict = {"Game_ID": game_id, "Team_Name": away_team_name, "Opposition_Team": home_team_name, "Inning": inning, "Home/Away": 'Away', "Hits": away_hits, "Opp_Hits": home_hits, "Errors": away_errors, "Runs": away_runs, "Opp_Runs": home_runs, "LOB": away_leftonbase, "Opp_LOB": home_leftonbase, "Final_Score": away_score}

        #print(home_dict)

        home_df = pd.DataFrame([home_dict])
        away_df = pd.DataFrame([away_dict])
        df = pd.concat([df,home_df], ignore_index=True)
        df = pd.concat([df,away_df], ignore_index=True)
        count += 1

    if count != inning:
        gr.Info("All reuiqred innings are not available!!!")

    return df

team_names = ["Arizona Diamondbacks",
"Atlanta Braves",
"Baltimore Orioles",
"Boston Red Sox",
"Chicago Cubs",
"Chicago White Sox",
"Cincinnati Reds",
"Cleveland Guardians",
"Colorado Rockies",
"Detroit Tigers",
"Houston Astros",
"Kansas City Royals",
"Los Angeles Angels",
"Los Angeles Dodgers",
"Miami Marlins",
"Milwaukee Brewers",
"Minnesota Twins",
"New York Mets",
"New York Yankees",
"Oakland Athletics",
"Philadelphia Phillies",
"Pittsburgh Pirates",
"San Diego Padres",
"San Francisco Giants",
"Seattle Mariners",
"St. Louis Cardinals",
"Tampa Bay Rays",
"Texas Rangers",
"Toronto Blue Jays",
"Washington Nationals"]

with gr.Blocks() as demo:
    # gr.Image("../Documentation/Context Diagram.png", scale=2)
    # gr(title="Your Interface Title")
    gr.Markdown("""
                <center> 
                <span style='font-size: 50px; font-weight: Bold; font-family: "Graduate", serif'>
                MLB Score Predictor V2
                </span>
                </center>
                """)
    # gr.Markdown("""
    #             <center> 
    #             <span style='font-size: 30px; line-height: 0.1; font-weight: Bold; font-family: "Graduate", serif'>
    #             Admin Dashboard 
    #             </span>
    #             </center>
    #             """)
    with gr.Row():
        inning = gr.Radio(["Five", "Six", "Seven", "Eight"], label="Inning", scale=1)
        game_id = gr.Number(None, minimum=0, label="Game_ID", scale=1)

    
    # with gr.Row():
    #     # with gr.Column():
    #     #     # venue = gr.Dropdown(choices = ["Home", "Away"], value="Away", max_choices = 1, label="Home/Away Status", scale=1)  
    #     #     inning = gr.Number(None, label="Inning", minimum = 1, maximum = 8, scale=1)

        
    #     with gr.Column():
    #         # opp_venue = gr.Dropdown(choices = ["Home", "Away"], value="Home", max_choices = 1, label="Opposition Home/Away Status", scale=1)  
    #         game_id = gr.Number(None, minimum=0, label="Game_ID", scale=1)

    
    # with gr.Row():
    #     with gr.Column():
    #         team = gr.Dropdown(choices = team_names, max_choices = 1, label="Team", scale=1)  
        
    #     with gr.Column():
    #         opp_team = gr.Dropdown(choices = team_names, max_choices = 1, label="Opposition Team", scale=1) 
    
    # with gr.Row():
    #     with gr.Column():
    #         hits = gr.Number(None, minimum=0, label="Hits - (H)", scale=1)
            
    #     with gr.Column():
    #         opp_hits = gr.Number(None, minimum=0, label="Opposition Hits - (H)", scale=1)
    
    # # summarize_btn = gr.Button(value="Summarize Text", size = 'sm')

    # with gr.Row():
    #     with gr.Column():
    #         errors = gr.Number(None, minimum=0, label="Errors - (E)", scale=2)
        
    #     with gr.Column():
    #         opp_errors = gr.Number(None, minimum=0, label="Opposition Errors - (E)", scale=2)

    #     # runs = gr.Number(None, minimum=0, label="Runs - (R)", scale=1)

    # with gr.Row():
    #     with gr.Column():
    #         lob = gr.Number(None, minimum=0, label="Left on Base - (LOB)", scale=1)

    #     with gr.Column():
    #         opp_lob = gr.Number(None, minimum=0, label="Opposition Left on Base - (LOB)", scale=1)

    # with gr.Row():
    #     with gr.Column():
    #         runs = gr.Number(None, minimum=0, label="Runs - (R)", scale=1)

    #     with gr.Column():
    #         opp_runs = gr.Number(None, minimum=0, label="Opposition Runs - (R)", scale=1)

    with gr.Row():
        predict_btn = gr.Button(value="Predict", size = 'sm')

    with gr.Row():
        with gr.Column():
            Winning_Team = gr.Textbox(label="Predicted Winner", scale=1)

        # with gr.Column():
        #     final_score_home1 = gr.Textbox(label="Home Team Predicted Score", scale=1)

    # with gr.Row():
    #     with gr.Column():
    #         final_score_away2 = gr.Textbox(label="Predicted Score Model CATB", scale=1)

    #     with gr.Column():
    #         final_score_home2 = gr.Textbox(label="Opposition Predicted Score Model CATB", scale=1)

    # patent_doc.upload(document_to_text, inputs = [patent_doc, slider, select_model], outputs=summary_doc)
    predict_btn.click(predict, inputs=[inning, game_id], outputs=[Winning_Team])
    # predict_btn.click(predict, inputs=[inning, game_id], outputs=final_score_home1)

    # predict_btn.click(predict_2, inputs=[team, inning, venue, hits, errors, lob, runs, opp_team, opp_runs, opp_hits], outputs=final_score_away2)
    # predict_btn.click(predict_2, inputs=[opp_team, inning, opp_venue, opp_hits, opp_errors, opp_lob, opp_runs, team, runs, hits], outputs=final_score_home2)

demo.launch(inbrowser=True)