Spaces:
Sleeping
Sleeping
File size: 11,668 Bytes
d8b259c 05e2e83 d8b259c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 |
import gradio as gr
import numpy as np
import pandas as pd
import pickle
import xgboost as xgb
from catboost import CatBoostRegressor
import mlbstatsapi
import tensorflow as tf
pd.set_option('display.max_columns', None)
# pd.set_option('display.max_rows', None)
def predict(inning, game_id):
if inning == "Seven":
inning = 7
elif inning == "Eight":
inning = 8
elif inning == "Five":
inning = 5
elif inning == "Six":
inning = 6
df = data_retrieve(inning, game_id)
# print(df)
df_home = df[df['Home/Away'] == "Home"]
df_away = df[df['Home/Away'] == "Away"]
if (len(df_home) < inning) or (len(df_away) < inning):
return [None, None]
# print(df_home)
df_main = pd.read_csv("Score_prediction_dataset_25th_August_TS_3seas.csv")
df_main = df_main.drop(columns=['Opp_LOB'])
df_main = df_main[(df_main['Inning'] <= inning)]
df_main = df_main[df_main['Team_Name'].isin(team_names)]
df_main = df_main[df_main['Opposition_Team'].isin(team_names)]
df_main = df_main[(df_main['Team_Name'] != 'American League All-Stars') & (df_main['Team_Name'] != 'National League All-Stars')]
df_main = df_main.dropna()
df_main = df_main.drop_duplicates()
df_main = df_main.pivot(index=['Game_ID', 'Team_Name', 'Opposition_Team', 'Home/Away', 'Final_Score'], columns='Inning', values=['Hits', 'Opp_Hits', 'Errors', 'Runs', 'Opp_Runs', 'LOB'])
df_main.columns = [f'{feature}_{inning}' for feature, inning in df_main.columns]
df_main = df_main.reset_index()
df_main = df_main.drop(columns=['Final_Score'])
df_main = pd.get_dummies(df_main, columns=['Team_Name', 'Opposition_Team'])
# df = pd.DataFrame([data], columns=["Team_Name", "Opposition_Team", "Inning", "Home/Away", "Hits", "Opp_Hits", "Errors", "Runs", "Opp_Runs", "LOB"])
pivoted_df_home = df_home.pivot(index=['Game_ID', 'Team_Name', 'Opposition_Team', 'Home/Away', 'Final_Score'], columns='Inning', values=['Hits', 'Opp_Hits', 'Errors', 'Runs', 'Opp_Runs', 'LOB'])
pivoted_df_home.columns = [f'{feature}_{inning}' for feature, inning in pivoted_df_home.columns]
# print(pivoted_df_home)
pivoted_df_home = pivoted_df_home.reset_index()
pivoted_df_home = pd.get_dummies(pivoted_df_home, columns=['Team_Name', 'Opposition_Team'])
pivoted_df_home = pivoted_df_home.reindex(columns=df_main.columns, fill_value=0)
pivoted_df_away = df_away.pivot(index=['Game_ID', 'Team_Name', 'Opposition_Team', 'Home/Away', 'Final_Score'], columns='Inning', values=['Hits', 'Opp_Hits', 'Errors', 'Runs', 'Opp_Runs', 'LOB'])
pivoted_df_away.columns = [f'{feature}_{inning}' for feature, inning in pivoted_df_away.columns]
pivoted_df_away = pivoted_df_away.reset_index()
pivoted_df_away = pd.get_dummies(pivoted_df_away, columns=['Team_Name', 'Opposition_Team'])
pivoted_df_away = pivoted_df_away.reindex(columns=df_main.columns, fill_value=0)
print(pivoted_df_home)
home_away_status = {'Home': 0, 'Away': 1}
pivoted_df_home['Home/Away'] = pivoted_df_home['Home/Away'].map(home_away_status)
pivoted_df_away['Home/Away'] = pivoted_df_away['Home/Away'].map(home_away_status)
pivoted_df_home = pivoted_df_home.astype(int)
pivoted_df_away = pivoted_df_away.astype(int)
pivoted_df_home = pivoted_df_home.drop(['Game_ID'], axis=1)
pivoted_df_away = pivoted_df_away.drop(['Game_ID'], axis=1)
# return
# print(len(df.columns))
if inning == 8:
model = tf.keras.models.load_model('ANNR_ts_CLAS_inn8_exp8_model.keras')
elif inning ==7:
model = tf.keras.models.load_model('ANNR_ts_CLAS_inn7_exp11_model.keras')
elif inning ==6:
model = tf.keras.models.load_model('ANNR_ts_CLAS_inn6_exp7_model.keras')
elif inning ==5:
model = tf.keras.models.load_model('ANNR_ts_CLAS_inn5_exp4_model.keras')
# with open('pca_model4.pkl', 'rb') as f:
# pca = pickle.load(f)
# with open('label_encoder_teams_xgbr1_exp3.pkl', 'rb') as f:
# label_encoder = pickle.load(f)
# print(pivoted_df_home)
# df = pca.transform(df)
# return
winner_prob_1 = model.predict(pivoted_df_home)
winner__prob_2 = model.predict(pivoted_df_away)
if winner_prob_1 < winner__prob_2:
winner = 'Home_Team'
else:
winner = 'Away_Team'
# return score_1
return winner
def data_retrieve(inning, game_id):
mlb = mlbstatsapi.Mlb()
df = pd.DataFrame(columns = ["Game_ID", "Team_Name", "Opposition_Team", "Inning", "Home/Away", "Hits", "Opp_Hits", "Errors", "Runs", "Opp_Runs", "LOB", "Opp_LOB", "Final_Score"])
try:
linescore = mlb.get_game_line_score(game_id, verify = False)
except:
gr.Info("Error retrieving data!!!")
home_runs = 0
away_runs = 0
home_hits = 0
away_hits = 0
home_errors = 0
away_errors = 0
home_leftonbase = 0
away_leftonbase = 0
count = 0
for i in range(inning):
try:
inning = linescore.innings[i].num
home_team_name = mlb.get_game_box_score(game_id, verify = False).teams.home.team.name
away_team_name = mlb.get_game_box_score(game_id, verify = False).teams.away.team.name
home_runs += linescore.innings[i].home.runs
away_runs += linescore.innings[i].away.runs
home_hits += linescore.innings[i].home.hits
away_hits += linescore.innings[i].away.hits
home_errors += linescore.innings[i].home.errors
away_errors += linescore.innings[i].away.errors
home_leftonbase += linescore.innings[i].home.leftonbase
away_leftonbase += linescore.innings[i].away.leftonbase
home_score = linescore.teams.home.runs
away_score = linescore.teams.away.runs
except:
gr.Info(f"Error retrieving inning {i+1} data!!!")
continue
home_dict = {"Game_ID": game_id, "Team_Name": home_team_name, "Opposition_Team": away_team_name, "Inning": inning, "Home/Away": 'Home', "Hits": home_hits, "Opp_Hits": away_hits, "Errors": home_errors, "Runs": home_runs, "Opp_Runs": away_runs, "LOB": home_leftonbase, "Opp_LOB": away_leftonbase, "Final_Score": home_score}
away_dict = {"Game_ID": game_id, "Team_Name": away_team_name, "Opposition_Team": home_team_name, "Inning": inning, "Home/Away": 'Away', "Hits": away_hits, "Opp_Hits": home_hits, "Errors": away_errors, "Runs": away_runs, "Opp_Runs": home_runs, "LOB": away_leftonbase, "Opp_LOB": home_leftonbase, "Final_Score": away_score}
#print(home_dict)
home_df = pd.DataFrame([home_dict])
away_df = pd.DataFrame([away_dict])
df = pd.concat([df,home_df], ignore_index=True)
df = pd.concat([df,away_df], ignore_index=True)
count += 1
if count != inning:
gr.Info("All reuiqred innings are not available!!!")
return df
team_names = ["Arizona Diamondbacks",
"Atlanta Braves",
"Baltimore Orioles",
"Boston Red Sox",
"Chicago Cubs",
"Chicago White Sox",
"Cincinnati Reds",
"Cleveland Guardians",
"Colorado Rockies",
"Detroit Tigers",
"Houston Astros",
"Kansas City Royals",
"Los Angeles Angels",
"Los Angeles Dodgers",
"Miami Marlins",
"Milwaukee Brewers",
"Minnesota Twins",
"New York Mets",
"New York Yankees",
"Oakland Athletics",
"Philadelphia Phillies",
"Pittsburgh Pirates",
"San Diego Padres",
"San Francisco Giants",
"Seattle Mariners",
"St. Louis Cardinals",
"Tampa Bay Rays",
"Texas Rangers",
"Toronto Blue Jays",
"Washington Nationals"]
with gr.Blocks() as demo:
# gr.Image("../Documentation/Context Diagram.png", scale=2)
# gr(title="Your Interface Title")
gr.Markdown("""
<center>
<span style='font-size: 50px; font-weight: Bold; font-family: "Graduate", serif'>
MLB Score Predictor V2
</span>
</center>
""")
# gr.Markdown("""
# <center>
# <span style='font-size: 30px; line-height: 0.1; font-weight: Bold; font-family: "Graduate", serif'>
# Admin Dashboard
# </span>
# </center>
# """)
with gr.Row():
inning = gr.Radio(["Five", "Six", "Seven", "Eight"], label="Inning", scale=1)
game_id = gr.Number(None, minimum=0, label="Game_ID", scale=1)
# with gr.Row():
# # with gr.Column():
# # # venue = gr.Dropdown(choices = ["Home", "Away"], value="Away", max_choices = 1, label="Home/Away Status", scale=1)
# # inning = gr.Number(None, label="Inning", minimum = 1, maximum = 8, scale=1)
# with gr.Column():
# # opp_venue = gr.Dropdown(choices = ["Home", "Away"], value="Home", max_choices = 1, label="Opposition Home/Away Status", scale=1)
# game_id = gr.Number(None, minimum=0, label="Game_ID", scale=1)
# with gr.Row():
# with gr.Column():
# team = gr.Dropdown(choices = team_names, max_choices = 1, label="Team", scale=1)
# with gr.Column():
# opp_team = gr.Dropdown(choices = team_names, max_choices = 1, label="Opposition Team", scale=1)
# with gr.Row():
# with gr.Column():
# hits = gr.Number(None, minimum=0, label="Hits - (H)", scale=1)
# with gr.Column():
# opp_hits = gr.Number(None, minimum=0, label="Opposition Hits - (H)", scale=1)
# # summarize_btn = gr.Button(value="Summarize Text", size = 'sm')
# with gr.Row():
# with gr.Column():
# errors = gr.Number(None, minimum=0, label="Errors - (E)", scale=2)
# with gr.Column():
# opp_errors = gr.Number(None, minimum=0, label="Opposition Errors - (E)", scale=2)
# # runs = gr.Number(None, minimum=0, label="Runs - (R)", scale=1)
# with gr.Row():
# with gr.Column():
# lob = gr.Number(None, minimum=0, label="Left on Base - (LOB)", scale=1)
# with gr.Column():
# opp_lob = gr.Number(None, minimum=0, label="Opposition Left on Base - (LOB)", scale=1)
# with gr.Row():
# with gr.Column():
# runs = gr.Number(None, minimum=0, label="Runs - (R)", scale=1)
# with gr.Column():
# opp_runs = gr.Number(None, minimum=0, label="Opposition Runs - (R)", scale=1)
with gr.Row():
predict_btn = gr.Button(value="Predict", size = 'sm')
with gr.Row():
with gr.Column():
Winning_Team = gr.Textbox(label="Predicted Winner", scale=1)
# with gr.Column():
# final_score_home1 = gr.Textbox(label="Home Team Predicted Score", scale=1)
# with gr.Row():
# with gr.Column():
# final_score_away2 = gr.Textbox(label="Predicted Score Model CATB", scale=1)
# with gr.Column():
# final_score_home2 = gr.Textbox(label="Opposition Predicted Score Model CATB", scale=1)
# patent_doc.upload(document_to_text, inputs = [patent_doc, slider, select_model], outputs=summary_doc)
predict_btn.click(predict, inputs=[inning, game_id], outputs=[Winning_Team])
# predict_btn.click(predict, inputs=[inning, game_id], outputs=final_score_home1)
# predict_btn.click(predict_2, inputs=[team, inning, venue, hits, errors, lob, runs, opp_team, opp_runs, opp_hits], outputs=final_score_away2)
# predict_btn.click(predict_2, inputs=[opp_team, inning, opp_venue, opp_hits, opp_errors, opp_lob, opp_runs, team, runs, hits], outputs=final_score_home2)
demo.launch(inbrowser=True) |