import gradio as gr import pandas as pd from gradio_huggingfacehub_search import HuggingfaceHubSearch import requests def update_table(category): data_dict = { "Overall": { "Rank": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26], "Model": ["Model A", "Model B", "Model C", "Model D", "Model E", "Model F", "Model G", "Model H", "Model I", "Model J", "Model K", "Model L", "Model M", "Model N", "Model O", "Model P", "Model Q", "Model R", "Model S", "Model T", "Model U", "Model V", "Model W", "Model X", "Model Y", "Model Z"], "Votes": [1250, 200, 3150, 4250, 5200, 6150, 7250, 8200, 9150, 10250, 11200, 12150, 13250, 21250, 200, 3150, 4250, 5200, 6150, 7250, 8200, 9150, 10250, 11200, 12150, 13250], "Organization": ["Org A", "Org B", "Org C", "Org D", "Org E", "Org F", "Org G", "Org H", "Org I", "Org J", "Org K", "Org L", "Org M", "Org N", "Org O", "Org P", "Org Q", "Model R", "Model S", "Model T", "Model U", "Model V", "Model W", "Model X", "Model Y", "Model Z"], "License": ["1MIT", "2Apache 2.0", "3GPL", "4MIT", "5Apache 2.0", "6GPL", "7MIT", "8Apache 2.0", "9GPL", "10MIT", "11Apache 2.0", "12GPL", "13MIT", "1MIT", "2Apache 2.0", "3GPL", "4MIT", "5Apache 2.0", "6GPL", "7MIT", "8Apache 2.0", "9GPL", "10MIT", "11Apache 2.0", "12GPL", "13MIT"] }, "Biology": { "Rank": [1, 2], "Model": ["GenePredict", "BioSeq"], "Votes": [180, 160], "Organization": ["BioTech", "Genomics Inc"], "License": ["GPL", "MIT"] } } data = data_dict.get(category, {"Rank": [], "Model": [], "Votes": [], "Organization": [], "License": []}) df = pd.DataFrame(data) return df def submit_vote(category, vote): if not category or not vote: return "All fields are required!" # code return f"Vote '{vote}' submitted successfully!" def submit_model(category, model_id): if not category or not model_id: return "All fields are required!" url = "https://sdk.nexa4ai.com/task" # Will have a new endpoint data = { "category": category, "model_id": model_id } response = requests.post(url, json=data) if response.status_code == 200: return "Your request has been submitted successfully. We will notify you by email once processing is complete." else: return f"Failed to submit request: {response.text}" with gr.Blocks() as app: with gr.Tabs(): with gr.TabItem("Table"): category = gr.Dropdown( choices=[ "Overall", "Biology", "Physics", "Business", "Chemistry", "Economics", "Philosophy", "History", "Culture", "Computer Science", "Math", "Health", "Law", "Engineering", "Other" ], label="Select Category", value="Overall" ) initial_data = update_table("Overall") table = gr.Dataframe( headers=["Rank", "Model", "Votes", "Organization", "License"], datatype=["number", "str", "number", "str", "str"], value=initial_data, col_count=(5, "fixed"), ) category.change(update_table, inputs=category, outputs=table) with gr.TabItem("Vote"): category = gr.Dropdown( choices=[ "Biology", "Physics", "Business", "Chemistry", "Economics", "Philosophy", "History", "Culture", "Computer Science", "Math", "Health", "Law", "Engineering", "Other" ], label="Select Category" ) vote = gr.CheckboxGroup(choices=["Option 1", "Option 2", "Option 3"], label="Choose your option") submit_button = gr.Button("Submit Vote") submit_result = gr.Label() submit_button.click(fn=submit_vote, inputs=[category, vote], outputs=submit_result) with gr.TabItem("Submit Model"): category = gr.Dropdown( choices=[ "Biology", "Physics", "Business", "Chemistry", "Economics", "Philosophy", "History", "Culture", "Computer Science", "Math", "Health", "Law", "Engineering", "Other" ], label="Select Category" ) model_id = HuggingfaceHubSearch( label="Hub Model ID", placeholder="Search for model id on Huggingface", search_type="model", ) submit_model_button = gr.Button("Submit Model") submit_model_result = gr.Label() submit_model_button.click(fn=submit_model, inputs=[category, model_id], outputs=submit_model_result) app.launch()