Spaces:
Running
Running
Husnain
commited on
⚡ [Enhance] Use nous-mixtral-8x7b as default model
Browse files
networks/huggingface_streamer.py
CHANGED
@@ -2,18 +2,11 @@ import json
|
|
2 |
import re
|
3 |
import requests
|
4 |
|
5 |
-
|
6 |
from tclogger import logger
|
7 |
-
from
|
8 |
-
|
9 |
-
from constants.models import (
|
10 |
-
MODEL_MAP,
|
11 |
-
STOP_SEQUENCES_MAP,
|
12 |
-
TOKEN_LIMIT_MAP,
|
13 |
-
TOKEN_RESERVED,
|
14 |
-
)
|
15 |
from constants.envs import PROXIES
|
16 |
from messagers.message_outputer import OpenaiStreamOutputer
|
|
|
17 |
|
18 |
|
19 |
class HuggingfaceStreamer:
|
@@ -21,33 +14,21 @@ class HuggingfaceStreamer:
|
|
21 |
if model in MODEL_MAP.keys():
|
22 |
self.model = model
|
23 |
else:
|
24 |
-
self.model = "mixtral-8x7b"
|
25 |
self.model_fullname = MODEL_MAP[self.model]
|
26 |
self.message_outputer = OpenaiStreamOutputer(model=self.model)
|
27 |
|
28 |
-
if self.model == "gemma-1.1-7b":
|
29 |
-
# this is not wrong, as repo `google/gemma-1.1-7b-it` is gated and must authenticate to access it
|
30 |
-
# so I use mistral-7b as a fallback
|
31 |
-
self.tokenizer = AutoTokenizer.from_pretrained(MODEL_MAP["mistral-7b"])
|
32 |
-
else:
|
33 |
-
self.tokenizer = AutoTokenizer.from_pretrained(self.model_fullname)
|
34 |
-
|
35 |
def parse_line(self, line):
|
36 |
line = line.decode("utf-8")
|
37 |
line = re.sub(r"data:\s*", "", line)
|
38 |
data = json.loads(line)
|
|
|
39 |
try:
|
40 |
content = data["token"]["text"]
|
41 |
except:
|
42 |
logger.err(data)
|
43 |
return content
|
44 |
|
45 |
-
def count_tokens(self, text):
|
46 |
-
tokens = self.tokenizer.encode(text)
|
47 |
-
token_count = len(tokens)
|
48 |
-
logger.note(f"Prompt Token Count: {token_count}")
|
49 |
-
return token_count
|
50 |
-
|
51 |
def chat_response(
|
52 |
self,
|
53 |
prompt: str = None,
|
@@ -80,16 +61,12 @@ class HuggingfaceStreamer:
|
|
80 |
top_p = max(top_p, 0.01)
|
81 |
top_p = min(top_p, 0.99)
|
82 |
|
83 |
-
|
84 |
-
TOKEN_LIMIT_MAP[self.model] - TOKEN_RESERVED - self.count_tokens(prompt)
|
85 |
-
)
|
86 |
-
if token_limit <= 0:
|
87 |
-
raise ValueError("Prompt exceeded token limit!")
|
88 |
|
89 |
if max_new_tokens is None or max_new_tokens <= 0:
|
90 |
-
max_new_tokens =
|
91 |
else:
|
92 |
-
max_new_tokens = min(max_new_tokens,
|
93 |
|
94 |
# References:
|
95 |
# huggingface_hub/inference/_client.py:
|
|
|
2 |
import re
|
3 |
import requests
|
4 |
|
|
|
5 |
from tclogger import logger
|
6 |
+
from constants.models import MODEL_MAP, STOP_SEQUENCES_MAP
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
from constants.envs import PROXIES
|
8 |
from messagers.message_outputer import OpenaiStreamOutputer
|
9 |
+
from messagers.token_checker import TokenChecker
|
10 |
|
11 |
|
12 |
class HuggingfaceStreamer:
|
|
|
14 |
if model in MODEL_MAP.keys():
|
15 |
self.model = model
|
16 |
else:
|
17 |
+
self.model = "nous-mixtral-8x7b"
|
18 |
self.model_fullname = MODEL_MAP[self.model]
|
19 |
self.message_outputer = OpenaiStreamOutputer(model=self.model)
|
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
def parse_line(self, line):
|
22 |
line = line.decode("utf-8")
|
23 |
line = re.sub(r"data:\s*", "", line)
|
24 |
data = json.loads(line)
|
25 |
+
content = ""
|
26 |
try:
|
27 |
content = data["token"]["text"]
|
28 |
except:
|
29 |
logger.err(data)
|
30 |
return content
|
31 |
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
def chat_response(
|
33 |
self,
|
34 |
prompt: str = None,
|
|
|
61 |
top_p = max(top_p, 0.01)
|
62 |
top_p = min(top_p, 0.99)
|
63 |
|
64 |
+
checker = TokenChecker(input_str=prompt, model=self.model)
|
|
|
|
|
|
|
|
|
65 |
|
66 |
if max_new_tokens is None or max_new_tokens <= 0:
|
67 |
+
max_new_tokens = checker.get_token_redundancy()
|
68 |
else:
|
69 |
+
max_new_tokens = min(max_new_tokens, checker.get_token_redundancy())
|
70 |
|
71 |
# References:
|
72 |
# huggingface_hub/inference/_client.py:
|