import os import gradio as gr from groq import Groq import gradio as gr from groq import Groq def generate_response(input_text, model, temperature, max_tokens, top_p): client = Groq() stream = client.chat.completions.create( messages=[ {"role": "system", "content": "you are a helpful assistant."}, {"role": "user", "content": input_text} ], model=model, temperature=temperature, max_tokens=max_tokens, top_p=top_p, stop=None, stream=True, ) response = "" for chunk in stream: delta_content = chunk.choices[0].delta.content if delta_content is not None: response += delta_content return response # Define the Gradio chat interface additional_inputs = [ gr.Dropdown(choices=["mixtral-8x7b-32768", "mixtral-12x7b-32768"], label="Model"), gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label="Temperature"), gr.Slider(minimum=1, maximum=4096, step=1, label="Max Tokens"), gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label="Top P"), ] gr.ChatInterface( fn=generate_response, chatbot=gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel"), additional_inputs=additional_inputs, title="Groq API LLMs AI Models", description="Using https://groq.com/ api, ofc as its free it will have some limitations so its better if you duplicate this space with your own api key
Hugging Face Space by [Nick088](https://linktr.ee/Nick088", ).launch()