import os import random import gradio as gr from groq import Groq def generate_response(prompt, history, model, temperature, max_tokens, top_p, seed): client = Groq( api_key = os.environ.get("Groq_Api_Key") ) if seed == 0: seed = random.randint(1, 100000) input_text = prompt + history stream = client.chat.completions.create( messages=input_text model=model, temperature=temperature, max_tokens=max_tokens, top_p=top_p, seed=seed, stop=None, stream=True, ) response = "" for chunk in stream: delta_content = chunk.choices[0].delta.content if delta_content is not None: response += delta_content yield response return response # Define the Gradio chat interface additional_inputs = [ gr.Dropdown(choices=["llama3-70b-8192", "llama3-8b-8192", "mixtral-8x7b-32768", "llama2-70b-4096", "gemma-7b-it"], value="llama3-70b-8192", label="LLM Model"), gr.Slider(minimum=0.0, maximum=1.0, step=0.01, value=0.5, label="Temperature", info="Controls randomness of responses"), gr.Slider(minimum=1, maximum=4096, step=1, value=4096, label="Max Tokens", info="The maximum number of tokens that the model can process in a single response"), gr.Slider(minimum=0.0, maximum=1.0, step=0.01, value=0.5, label="Top P", info="A method of text generation where a model will only consider the most probable next tokens that make up the probability p."), gr.Number(precision=0, value=42, label="Seed", info="A starting point to initiate generation, use 0 for random") ] gr.ChatInterface( fn=generate_response, chatbot=gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel"), additional_inputs=additional_inputs, title="Groq API LLMs AI Models", description="Using https://groq.com/ api, ofc as its free it will have some limitations of requests per minute, so its better if you duplicate this space with your own api key
Hugging Face Space by [Nick088](https://linktr.ee/Nick088)", ).launch()