Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import numpy as np | |
import librosa.util as librosa_util | |
from scipy.signal import get_window | |
def window_sumsquare( | |
window, | |
n_frames, | |
hop_length, | |
win_length, | |
n_fft, | |
dtype=np.float32, | |
norm=None, | |
): | |
""" | |
# from librosa 0.6 | |
Compute the sum-square envelope of a window function at a given hop length. | |
This is used to estimate modulation effects induced by windowing | |
observations in short-time fourier transforms. | |
Parameters | |
---------- | |
window : string, tuple, number, callable, or list-like | |
Window specification, as in `get_window` | |
n_frames : int > 0 | |
The number of analysis frames | |
hop_length : int > 0 | |
The number of samples to advance between frames | |
win_length : [optional] | |
The length of the window function. By default, this matches `n_fft`. | |
n_fft : int > 0 | |
The length of each analysis frame. | |
dtype : np.dtype | |
The data type of the output | |
Returns | |
------- | |
wss : np.ndarray, shape=`(n_fft + hop_length * (n_frames - 1))` | |
The sum-squared envelope of the window function | |
""" | |
if win_length is None: | |
win_length = n_fft | |
n = n_fft + hop_length * (n_frames - 1) | |
x = np.zeros(n, dtype=dtype) | |
# Compute the squared window at the desired length | |
win_sq = get_window(window, win_length, fftbins=True) | |
win_sq = librosa_util.normalize(win_sq, norm=norm) ** 2 | |
win_sq = librosa_util.pad_center(data=win_sq, size=n_fft) | |
# Fill the envelope | |
for i in range(n_frames): | |
sample = i * hop_length | |
x[sample : min(n, sample + n_fft)] += win_sq[: max(0, min(n_fft, n - sample))] | |
return x | |
def griffin_lim(magnitudes, stft_fn, n_iters=30): | |
""" | |
PARAMS | |
------ | |
magnitudes: spectrogram magnitudes | |
stft_fn: STFT class with transform (STFT) and inverse (ISTFT) methods | |
""" | |
angles = np.angle(np.exp(2j * np.pi * np.random.rand(*magnitudes.size()))) | |
angles = angles.astype(np.float32) | |
angles = torch.autograd.Variable(torch.from_numpy(angles)) | |
signal = stft_fn.inverse(magnitudes, angles).squeeze(1) | |
for i in range(n_iters): | |
_, angles = stft_fn.transform(signal) | |
signal = stft_fn.inverse(magnitudes, angles).squeeze(1) | |
return signal | |
def dynamic_range_compression(x, normalize_fun=torch.log, C=1, clip_val=1e-5): | |
""" | |
PARAMS | |
------ | |
C: compression factor | |
""" | |
return normalize_fun(torch.clamp(x, min=clip_val) * C) | |
def dynamic_range_decompression(x, C=1): | |
""" | |
PARAMS | |
------ | |
C: compression factor used to compress | |
""" | |
return torch.exp(x) / C | |