Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,424 Bytes
fd7e9e3 c4a40e9 3352e23 fd7e9e3 c4a40e9 5319ec3 4cd7d82 1e0e767 5319ec3 fd7e9e3 c4a40e9 fd7e9e3 226e074 fd7e9e3 c4a40e9 fd7e9e3 c4a40e9 fd7e9e3 c4a40e9 3352e23 c4a40e9 fd7e9e3 c4a40e9 fd7e9e3 c4a40e9 1e5c329 c4a40e9 4cd7d82 1e5c329 4cd7d82 1e5c329 c4a40e9 3352e23 1e5c329 c4a40e9 4cd7d82 1e0e767 5319ec3 fd7e9e3 c4a40e9 3352e23 c4a40e9 1e5c329 fd7e9e3 1e5c329 fd7e9e3 c4a40e9 5319ec3 c4a40e9 fd7e9e3 1e5c329 c4a40e9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 |
import os
import cv2
import torch
import numpy as np
import gradio as gr
import spaces
from huggingface_hub import hf_hub_download
from depth_anything_v2.dpt import DepthAnythingV2
# Model initialization
model_configs = {
'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]},
'vitb': {'encoder': 'vitb', 'features': 128, 'out_channels': [96, 192, 384, 768]},
'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]}
}
class NormalMapSimple:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"images": ("IMAGE",),
"scale_XY": ("FLOAT",{"default": 1, "min": 0, "max": 100, "step": 0.001}),
},
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "normal_map"
CATEGORY = "image/filters"
def normal_map(self, images, scale_XY):
t = images.detach().clone().cpu().numpy().astype(np.float32)
L = np.mean(t[:,:,:,:3], axis=3)
for i in range(t.shape[0]):
t[i,:,:,0] = cv2.Scharr(L[i], -1, 1, 0, cv2.BORDER_REFLECT) * -1
t[i,:,:,1] = cv2.Scharr(L[i], -1, 0, 1, cv2.BORDER_REFLECT)
t[:,:,:,2] = 1
t = torch.from_numpy(t)
t[:,:,:,:2] *= scale_XY
t[:,:,:,:3] = torch.nn.functional.normalize(t[:,:,:,:3], dim=3) / 2 + 0.5
return (t,)
class ConvertNormals:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"normals": ("IMAGE",),
"input_mode": (["BAE", "MiDaS", "Standard", "DirectX"],),
"output_mode": (["BAE", "MiDaS", "Standard", "DirectX"],),
"scale_XY": ("FLOAT",{"default": 1, "min": 0, "max": 100, "step": 0.001}),
"normalize": ("BOOLEAN", {"default": True}),
"fix_black": ("BOOLEAN", {"default": True}),
},
"optional": {
"optional_fill": ("IMAGE",),
},
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "convert_normals"
CATEGORY = "image/filters"
def convert_normals(self, normals, input_mode, output_mode, scale_XY, normalize, fix_black, optional_fill=None):
try:
t = normals.detach().clone()
if input_mode == "BAE":
t[:,:,:,0] = 1 - t[:,:,:,0] # invert R
elif input_mode == "MiDaS":
t[:,:,:,:3] = torch.stack([1 - t[:,:,:,2], t[:,:,:,1], t[:,:,:,0]], dim=3) # BGR -> RGB and invert R
elif input_mode == "DirectX":
t[:,:,:,1] = 1 - t[:,:,:,1] # invert G
if fix_black:
key = torch.clamp(1 - t[:,:,:,2] * 2, min=0, max=1)
if optional_fill is None:
t[:,:,:,0] += key * 0.5
t[:,:,:,1] += key * 0.5
t[:,:,:,2] += key
else:
fill = optional_fill.detach().clone()
if fill.shape[1:3] != t.shape[1:3]:
fill = torch.nn.functional.interpolate(fill.movedim(-1,1), size=(t.shape[1], t.shape[2]), mode='bilinear').movedim(1,-1)
if fill.shape[0] != t.shape[0]:
fill = fill[0].unsqueeze(0).expand(t.shape[0], -1, -1, -1)
t[:,:,:,:3] += fill[:,:,:,:3] * key.unsqueeze(3).expand(-1, -1, -1, 3)
t[:,:,:,:2] = (t[:,:,:,:2] - 0.5) * scale_XY + 0.5
if normalize:
# Transform to [-1, 1] range
t_norm = t[:,:,:,:3] * 2 - 1
# Calculate the length of each vector
lengths = torch.sqrt(torch.sum(t_norm**2, dim=3, keepdim=True))
# Avoid division by zero
lengths = torch.clamp(lengths, min=1e-6)
# Normalize each vector to unit length
t_norm = t_norm / lengths
# Transform back to [0, 1] range
t[:,:,:,:3] = (t_norm + 1) / 2
if output_mode == "BAE":
t[:,:,:,0] = 1 - t[:,:,:,0] # invert R
elif output_mode == "MiDaS":
t[:,:,:,:3] = torch.stack([t[:,:,:,2], t[:,:,:,1], 1 - t[:,:,:,0]], dim=3) # invert R and BGR -> RGB
elif output_mode == "DirectX":
t[:,:,:,1] = 1 - t[:,:,:,1] # invert G
return (t,)
except Exception as e:
print(f"Error in convert_normals: {str(e)}")
return (normals,)
def get_image_intensity(img, gamma_correction=1.0):
"""
Extract intensity map from an image using HSV color space
"""
# Convert to HSV color space
result = cv2.cvtColor(img, cv2.COLOR_RGB2HSV)
# Extract Value channel (intensity)
result = result[:, :, 2].astype(np.float32) / 255.0
# Apply gamma correction
result = result ** gamma_correction
# Convert back to 0-255 range
result = (result * 255.0).clip(0, 255).astype(np.uint8)
# Convert to RGB (still grayscale but in RGB format)
result = cv2.cvtColor(result, cv2.COLOR_GRAY2RGB)
return result
def blend_numpy_images(image1, image2, blend_factor=0.4, mode="normal"):
"""
Blend two numpy images using normal mode
"""
# Convert to float32 and normalize to 0-1
img1 = image1.astype(np.float32) / 255.0
img2 = image2.astype(np.float32) / 255.0
# Normal blend mode
blended = img1 * (1 - blend_factor) + img2 * blend_factor
# Convert back to uint8
blended = (blended * 255.0).clip(0, 255).astype(np.uint8)
return blended
def process_normal_map(image):
"""
Process image through NormalMapSimple and ConvertNormals
"""
# Convert numpy image to torch tensor with batch dimension
image_tensor = torch.from_numpy(image).unsqueeze(0).float() / 255.0
# Create instances of the classes
normal_map_generator = NormalMapSimple()
normal_converter = ConvertNormals()
# Generate initial normal map
normal_map = normal_map_generator.normal_map(image_tensor, scale_XY=1.0)[0]
# Convert normal map from Standard to DirectX
converted_normal = normal_converter.convert_normals(
normal_map,
input_mode="Standard",
output_mode="DirectX",
scale_XY=1.0,
normalize=True,
fix_black=True
)[0]
# Convert back to numpy array
result = (converted_normal.squeeze(0).numpy() * 255).astype(np.uint8)
return result
# Download and initialize model
def initialize_model():
encoder = 'vitl'
max_depth = 1
model = DepthAnythingV2(**{**model_configs[encoder], 'max_depth': max_depth})
# Download model from private repo
model_path = hf_hub_download(
"NightRaven109/DepthAnythingv2custom",
"model95.pth",
use_auth_token=os.environ['Read']
)
# Load checkpoint
checkpoint = torch.load(model_path, map_location='cpu')
# Get state dict
state_dict = {}
for key in checkpoint.keys():
if key not in ['optimizer', 'epoch', 'previous_best']:
state_dict = checkpoint[key]
# Handle module prefix
my_state_dict = {}
for key in state_dict.keys():
new_key = key.replace('module.', '')
my_state_dict[new_key] = state_dict[key]
model.load_state_dict(my_state_dict)
return model
# Initialize model at startup
MODEL = initialize_model()
@spaces.GPU
def process_image(input_image):
"""
Process the input image and return depth map and normal map
"""
if input_image is None:
return None, None
# Move model to GPU for processing
MODEL.to('cuda')
MODEL.eval()
# Convert from RGB to BGR for depth processing
input_bgr = cv2.cvtColor(np.array(input_image), cv2.COLOR_RGB2BGR)
with torch.no_grad():
# Get depth map
depth = MODEL.infer_image(input_bgr)
# Normalize depth for visualization (0-255)
depth_normalized = ((depth - depth.min()) / (depth.max() - depth.min()) * 255).astype(np.uint8)
# Move model back to CPU
MODEL.to('cpu')
# Get intensity map
intensity_map = get_image_intensity(np.array(input_image), gamma_correction=1.0)
# Blend depth raw with intensity map
blended_result = blend_numpy_images(
cv2.cvtColor(depth_normalized, cv2.COLOR_GRAY2RGB), # Convert depth to RGB
intensity_map,
blend_factor=0.4,
mode="normal"
)
# Generate normal map from blended result
normal_map = process_normal_map(blended_result)
return depth_normalized, normal_map
@spaces.GPU
def gradio_interface(input_img):
try:
depth_raw, normal = process_image(input_img)
return [depth_raw, normal]
except Exception as e:
print(f"Error processing image: {str(e)}")
return [None, None]
# Define interface
iface = gr.Interface(
fn=gradio_interface,
inputs=gr.Image(label="Input Image"),
outputs=[
gr.Image(label="Raw Depth Map"),
gr.Image(label="Normal Map")
],
title="Depth and Normal Map Generation",
description="Upload an image to generate its depth map and normal map.",
examples=["image.jpg"]
)
# Launch the app
if __name__ == "__main__":
iface.launch()
|