File size: 13,272 Bytes
6ecc7d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
import os
import numpy as np
import cv2
import glob
import math
import yaml
import random
from collections import OrderedDict
import torch
import torch.nn.functional as F

from basicsr.data.transforms import augment
from basicsr.data.degradations import circular_lowpass_kernel, random_mixed_kernels
from basicsr.utils import DiffJPEG, USMSharp, img2tensor, tensor2img
from basicsr.utils.img_process_util import filter2D
from basicsr.data.degradations import random_add_gaussian_noise_pt, random_add_poisson_noise_pt
from torchvision.transforms.functional import (adjust_brightness, adjust_contrast, adjust_hue, adjust_saturation,
                                               normalize, rgb_to_grayscale)

cur_path = os.path.dirname(os.path.abspath(__file__))


def ordered_yaml():
    """Support OrderedDict for yaml.



    Returns:

        yaml Loader and Dumper.

    """
    try:
        from yaml import CDumper as Dumper
        from yaml import CLoader as Loader
    except ImportError:
        from yaml import Dumper, Loader

    _mapping_tag = yaml.resolver.BaseResolver.DEFAULT_MAPPING_TAG

    def dict_representer(dumper, data):
        return dumper.represent_dict(data.items())

    def dict_constructor(loader, node):
        return OrderedDict(loader.construct_pairs(node))

    Dumper.add_representer(OrderedDict, dict_representer)
    Loader.add_constructor(_mapping_tag, dict_constructor)
    return Loader, Dumper

def opt_parse(opt_path):
    with open(opt_path, mode='r') as f:
        Loader, _ = ordered_yaml()
        opt = yaml.load(f, Loader=Loader) 

    return opt

class RealESRGAN_degradation(object):
    def __init__(self, opt_path='', device='cpu'):
        self.opt = opt_parse(opt_path)
        self.device = device #torch.device('cpu')
        optk = self.opt['kernel_info']       

        # blur settings for the first degradation
        self.blur_kernel_size = optk['blur_kernel_size']
        self.kernel_list = optk['kernel_list']
        self.kernel_prob = optk['kernel_prob']
        self.blur_sigma = optk['blur_sigma']
        self.betag_range = optk['betag_range']
        self.betap_range = optk['betap_range']
        self.sinc_prob = optk['sinc_prob']

        # blur settings for the second degradation
        self.blur_kernel_size2 = optk['blur_kernel_size2']
        self.kernel_list2 = optk['kernel_list2']
        self.kernel_prob2 = optk['kernel_prob2']
        self.blur_sigma2 = optk['blur_sigma2']
        self.betag_range2 = optk['betag_range2']
        self.betap_range2 = optk['betap_range2']
        self.sinc_prob2 = optk['sinc_prob2']

        # a final sinc filter
        self.final_sinc_prob = optk['final_sinc_prob']

        self.kernel_range = [2 * v + 1 for v in range(3, 11)]  # kernel size ranges from 7 to 21
        self.pulse_tensor = torch.zeros(21, 21).float()  # convolving with pulse tensor brings no blurry effect
        self.pulse_tensor[10, 10] = 1

        self.jpeger = DiffJPEG(differentiable=False).to(self.device)
        self.usm_shaper = USMSharp().to(self.device)
    
    def color_jitter_pt(self, img, brightness, contrast, saturation, hue):
        fn_idx = torch.randperm(4)
        for fn_id in fn_idx:
            if fn_id == 0 and brightness is not None:
                brightness_factor = torch.tensor(1.0).uniform_(brightness[0], brightness[1]).item()
                img = adjust_brightness(img, brightness_factor)

            if fn_id == 1 and contrast is not None:
                contrast_factor = torch.tensor(1.0).uniform_(contrast[0], contrast[1]).item()
                img = adjust_contrast(img, contrast_factor)

            if fn_id == 2 and saturation is not None:
                saturation_factor = torch.tensor(1.0).uniform_(saturation[0], saturation[1]).item()
                img = adjust_saturation(img, saturation_factor)

            if fn_id == 3 and hue is not None:
                hue_factor = torch.tensor(1.0).uniform_(hue[0], hue[1]).item()
                img = adjust_hue(img, hue_factor)
        return img

    def random_augment(self, img_gt):
        # random horizontal flip
        img_gt, status = augment(img_gt, hflip=True, rotation=False, return_status=True)
        """

        # random color jitter 

        if np.random.uniform() < self.opt['color_jitter_prob']:

            jitter_val = np.random.uniform(-shift, shift, 3).astype(np.float32)

            img_gt = img_gt + jitter_val

            img_gt = np.clip(img_gt, 0, 1)    



        # random grayscale

        if np.random.uniform() < self.opt['gray_prob']:

            #img_gt = cv2.cvtColor(img_gt, cv2.COLOR_BGR2GRAY)

            img_gt = cv2.cvtColor(img_gt, cv2.COLOR_RGB2GRAY)

            img_gt = np.tile(img_gt[:, :, None], [1, 1, 3])

        """
        # BGR to RGB, HWC to CHW, numpy to tensor
        img_gt = img2tensor([img_gt], bgr2rgb=False, float32=True)[0].unsqueeze(0)

        return img_gt

    def random_kernels(self):
        # ------------------------ Generate kernels (used in the first degradation) ------------------------ #
        kernel_size = random.choice(self.kernel_range)
        if np.random.uniform() < self.sinc_prob:
            # this sinc filter setting is for kernels ranging from [7, 21]
            if kernel_size < 13:
                omega_c = np.random.uniform(np.pi / 3, np.pi)
            else:
                omega_c = np.random.uniform(np.pi / 5, np.pi)
            kernel = circular_lowpass_kernel(omega_c, kernel_size, pad_to=False)
        else:
            kernel = random_mixed_kernels(
                    self.kernel_list,
                    self.kernel_prob,
                    kernel_size,
                    self.blur_sigma,
                    self.blur_sigma, [-math.pi, math.pi],
                    self.betag_range,
                    self.betap_range,
                    noise_range=None)
        # pad kernel
        pad_size = (21 - kernel_size) // 2
        kernel = np.pad(kernel, ((pad_size, pad_size), (pad_size, pad_size)))

        # ------------------------ Generate kernels (used in the second degradation) ------------------------ #
        kernel_size = random.choice(self.kernel_range)
        if np.random.uniform() < self.sinc_prob2:
            if kernel_size < 13:
                omega_c = np.random.uniform(np.pi / 3, np.pi)
            else:
                omega_c = np.random.uniform(np.pi / 5, np.pi)
            kernel2 = circular_lowpass_kernel(omega_c, kernel_size, pad_to=False)
        else:
            kernel2 = random_mixed_kernels(
                self.kernel_list2,
                self.kernel_prob2,
                kernel_size,
                self.blur_sigma2,
                self.blur_sigma2, [-math.pi, math.pi],
                self.betag_range2,
                self.betap_range2,
                noise_range=None)

        # pad kernel
        pad_size = (21 - kernel_size) // 2
        kernel2 = np.pad(kernel2, ((pad_size, pad_size), (pad_size, pad_size)))

        # ------------------------------------- sinc kernel ------------------------------------- #
        if np.random.uniform() < self.final_sinc_prob:
            kernel_size = random.choice(self.kernel_range)
            omega_c = np.random.uniform(np.pi / 3, np.pi)
            sinc_kernel = circular_lowpass_kernel(omega_c, kernel_size, pad_to=21)
            sinc_kernel = torch.FloatTensor(sinc_kernel)
        else:
            sinc_kernel = self.pulse_tensor

        kernel = torch.FloatTensor(kernel)
        kernel2 = torch.FloatTensor(kernel2) 

        return kernel, kernel2, sinc_kernel

    @torch.no_grad()
    def degrade_process(self, img_gt, resize_bak=False):
        img_gt = self.random_augment(img_gt)
        kernel1, kernel2, sinc_kernel = self.random_kernels()
        img_gt, kernel1, kernel2, sinc_kernel = img_gt.to(self.device), kernel1.to(self.device), kernel2.to(self.device), sinc_kernel.to(self.device)
        #img_gt = self.usm_shaper(img_gt) # shaper gt
        ori_h, ori_w = img_gt.size()[2:4]

        #scale_final = random.randint(4, 16)
        scale_final = 4

        # ----------------------- The first degradation process ----------------------- #
        # blur
        out = filter2D(img_gt, kernel1)
        # random resize
        updown_type = random.choices(['up', 'down', 'keep'], self.opt['resize_prob'])[0]
        if updown_type == 'up':
            scale = np.random.uniform(1, self.opt['resize_range'][1])
        elif updown_type == 'down':
            scale = np.random.uniform(self.opt['resize_range'][0], 1)
        else:
            scale = 1
        mode = random.choice(['area', 'bilinear', 'bicubic'])
        out = F.interpolate(out, scale_factor=scale, mode=mode)
        # noise
        gray_noise_prob = self.opt['gray_noise_prob']
        if np.random.uniform() < self.opt['gaussian_noise_prob']:
            out = random_add_gaussian_noise_pt(
                out, sigma_range=self.opt['noise_range'], clip=True, rounds=False, gray_prob=gray_noise_prob)
        else:
            out = random_add_poisson_noise_pt(
                out,
                scale_range=self.opt['poisson_scale_range'],
                gray_prob=gray_noise_prob,
                clip=True,
                rounds=False)
        # JPEG compression
        jpeg_p = out.new_zeros(out.size(0)).uniform_(*self.opt['jpeg_range'])
        out = torch.clamp(out, 0, 1)
        out = self.jpeger(out, quality=jpeg_p)

        # ----------------------- The second degradation process ----------------------- #
        # blur
        if np.random.uniform() < self.opt['second_blur_prob']:
            out = filter2D(out, kernel2)
        # random resize
        updown_type = random.choices(['up', 'down', 'keep'], self.opt['resize_prob2'])[0]
        if updown_type == 'up':
            scale = np.random.uniform(1, self.opt['resize_range2'][1])
        elif updown_type == 'down':
            scale = np.random.uniform(self.opt['resize_range2'][0], 1)
        else:
            scale = 1
        mode = random.choice(['area', 'bilinear', 'bicubic'])
        out = F.interpolate(
            out, size=(int(ori_h / scale_final * scale), int(ori_w / scale_final * scale)), mode=mode)
        # noise
        gray_noise_prob = self.opt['gray_noise_prob2']
        if np.random.uniform() < self.opt['gaussian_noise_prob2']:
            out = random_add_gaussian_noise_pt(
                out, sigma_range=self.opt['noise_range2'], clip=True, rounds=False, gray_prob=gray_noise_prob)
        else:
            out = random_add_poisson_noise_pt(
                out,
                scale_range=self.opt['poisson_scale_range2'],
                gray_prob=gray_noise_prob,
                clip=True,
                rounds=False)

        # JPEG compression + the final sinc filter
        # We also need to resize images to desired sizes. We group [resize back + sinc filter] together
        # as one operation.
        # We consider two orders:
        #   1. [resize back + sinc filter] + JPEG compression
        #   2. JPEG compression + [resize back + sinc filter]
        # Empirically, we find other combinations (sinc + JPEG + Resize) will introduce twisted lines.
        if np.random.uniform() < 0.5:
            # resize back + the final sinc filter
            mode = random.choice(['area', 'bilinear', 'bicubic'])
            out = F.interpolate(out, size=(ori_h // scale_final, ori_w // scale_final), mode=mode)
            out = filter2D(out, sinc_kernel)
            # JPEG compression
            jpeg_p = out.new_zeros(out.size(0)).uniform_(*self.opt['jpeg_range2'])
            out = torch.clamp(out, 0, 1)
            out = self.jpeger(out, quality=jpeg_p)
        else:
            # JPEG compression
            jpeg_p = out.new_zeros(out.size(0)).uniform_(*self.opt['jpeg_range2'])
            out = torch.clamp(out, 0, 1)
            out = self.jpeger(out, quality=jpeg_p)
            # resize back + the final sinc filter
            mode = random.choice(['area', 'bilinear', 'bicubic'])
            out = F.interpolate(out, size=(ori_h // scale_final, ori_w // scale_final), mode=mode)
            out = filter2D(out, sinc_kernel)

        if np.random.uniform() < self.opt['gray_prob']:
            out = rgb_to_grayscale(out, num_output_channels=1)

        if np.random.uniform() < self.opt['color_jitter_prob']:
            brightness = self.opt.get('brightness', (0.5, 1.5))
            contrast = self.opt.get('contrast', (0.5, 1.5))
            saturation = self.opt.get('saturation', (0, 1.5))
            hue = self.opt.get('hue', (-0.1, 0.1))
            out = self.color_jitter_pt(out, brightness, contrast, saturation, hue)

        if resize_bak:
            mode = random.choice(['area', 'bilinear', 'bicubic'])
            out = F.interpolate(out, size=(ori_h, ori_w), mode=mode)
        # clamp and round
        img_lq = torch.clamp((out * 255.0).round(), 0, 255) / 255.

        return img_gt, img_lq