TextureUpscaleBeta / models /losses /contperceptual.py
NightRaven109's picture
Upload 73 files
6ecc7d4 verified
raw
history blame
8.48 kB
import torch
import torch.nn as nn
from taming.modules.losses.vqperceptual import * # TODO: taming dependency yes/no?
from diffusers.models.modeling_utils import ModelMixin
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.loaders import FromOriginalControlnetMixin
class LPIPSWithDiscriminator(ModelMixin, ConfigMixin, FromOriginalControlnetMixin):
def __init__(self, disc_start, logvar_init=0.0, kl_weight=1.0, pixelloss_weight=1.0,
disc_num_layers=3, disc_in_channels=3, disc_factor=1.0, disc_weight=1.0,
perceptual_weight=1.0, use_actnorm=False, disc_conditional=False,
disc_loss="hinge"):
super().__init__()
assert disc_loss in ["hinge", "vanilla"]
self.kl_weight = kl_weight
self.pixel_weight = pixelloss_weight
self.perceptual_loss = LPIPS().eval()
self.perceptual_weight = perceptual_weight
# output log variance
self.logvar = nn.Parameter(torch.ones(size=()) * logvar_init)
self.discriminator = NLayerDiscriminator(input_nc=disc_in_channels,
n_layers=disc_num_layers,
use_actnorm=use_actnorm
).apply(weights_init)
self.discriminator_iter_start = disc_start
self.disc_loss = hinge_d_loss if disc_loss == "hinge" else vanilla_d_loss
self.disc_factor = disc_factor
self.discriminator_weight = disc_weight
self.disc_conditional = disc_conditional
def calculate_adaptive_weight(self, nll_loss, g_loss, last_layer=None):
if last_layer is not None:
nll_grads = torch.autograd.grad(nll_loss, last_layer, retain_graph=True)[0]
g_grads = torch.autograd.grad(g_loss, last_layer, retain_graph=True)[0]
else:
nll_grads = torch.autograd.grad(nll_loss, self.last_layer[0], retain_graph=True)[0]
g_grads = torch.autograd.grad(g_loss, self.last_layer[0], retain_graph=True)[0]
d_weight = torch.norm(nll_grads) / (torch.norm(g_grads) + 1e-4)
d_weight = torch.clamp(d_weight, 0.0, 1e4).detach()
d_weight = d_weight * self.discriminator_weight
return d_weight
def forward(self, inputs, reconstructions, optimizer_idx,
global_step, posteriors=None, last_layer=None, cond=None, split="train",
weights=None, return_dic=False):
rec_loss = torch.abs(inputs.contiguous() - reconstructions.contiguous())
if self.perceptual_weight > 0:
p_loss = self.perceptual_loss(inputs.contiguous(), reconstructions.contiguous())
rec_loss = rec_loss + self.perceptual_weight * p_loss
nll_loss = rec_loss / torch.exp(self.logvar) + self.logvar
weighted_nll_loss = nll_loss
if weights is not None:
weighted_nll_loss = weights*nll_loss
weighted_nll_loss = torch.mean(weighted_nll_loss) / weighted_nll_loss.shape[0]
nll_loss = torch.mean(nll_loss) / nll_loss.shape[0]
if self.kl_weight>0:
kl_loss = posteriors.kl()
kl_loss = torch.mean(kl_loss) / kl_loss.shape[0]
# now the GAN part
if optimizer_idx == 0:
# generator update
if cond is None:
assert not self.disc_conditional
logits_fake = self.discriminator(reconstructions.contiguous())
else:
assert self.disc_conditional
logits_fake = self.discriminator(torch.cat((reconstructions.contiguous(), cond), dim=1))
g_loss = -torch.mean(logits_fake)
if self.disc_factor > 0.0:
try:
d_weight = self.calculate_adaptive_weight(nll_loss, g_loss, last_layer=last_layer)
except RuntimeError:
# assert not self.training
d_weight = torch.tensor(1.0) * self.discriminator_weight
else:
# d_weight = torch.tensor(0.0)
d_weight = torch.tensor(0.0)
disc_factor = adopt_weight(self.disc_factor, global_step, threshold=self.discriminator_iter_start)
if self.kl_weight>0:
loss = weighted_nll_loss + self.kl_weight * kl_loss + d_weight * disc_factor * g_loss
log = {"{}/total_loss".format(split): loss.clone().detach().mean(), "{}/logvar".format(split): self.logvar.detach(),
"{}/kl_loss".format(split): kl_loss.detach().mean(), "{}/nll_loss".format(split): nll_loss.detach().mean(),
"{}/rec_loss".format(split): rec_loss.detach().mean(),
"{}/d_weight".format(split): d_weight.detach(),
"{}/disc_factor".format(split): torch.tensor(disc_factor),
"{}/g_loss".format(split): g_loss.detach().mean(),
}
if return_dic:
loss_dic = {}
loss_dic['total_loss'] = loss.clone().detach().mean()
loss_dic['logvar'] = self.logvar.detach()
loss_dic['kl_loss'] = kl_loss.detach().mean()
loss_dic['nll_loss'] = nll_loss.detach().mean()
loss_dic['rec_loss'] = rec_loss.detach().mean()
loss_dic['d_weight'] = d_weight.detach()
loss_dic['disc_factor'] = torch.tensor(disc_factor)
loss_dic['g_loss'] = g_loss.detach().mean()
else:
loss = weighted_nll_loss + d_weight * disc_factor * g_loss
log = {"{}/total_loss".format(split): loss.clone().detach().mean(), "{}/logvar".format(split): self.logvar.detach(),
"{}/nll_loss".format(split): nll_loss.detach().mean(),
"{}/rec_loss".format(split): rec_loss.detach().mean(),
"{}/d_weight".format(split): d_weight.detach(),
"{}/disc_factor".format(split): torch.tensor(disc_factor),
"{}/g_loss".format(split): g_loss.detach().mean(),
}
if return_dic:
loss_dic = {}
loss_dic["{}/total_loss".format(split)] = loss.clone().detach().mean()
loss_dic["{}/logvar".format(split)] = self.logvar.detach()
loss_dic['nll_loss'.format(split)] = nll_loss.detach().mean()
loss_dic['rec_loss'.format(split)] = rec_loss.detach().mean()
loss_dic['d_weight'.format(split)] = d_weight.detach()
loss_dic['disc_factor'.format(split)] = torch.tensor(disc_factor)
loss_dic['g_loss'.format(split)] = g_loss.detach().mean()
if return_dic:
return loss, log, loss_dic
return loss, log
if optimizer_idx == 1:
# second pass for discriminator update
if cond is None:
logits_real = self.discriminator(inputs.contiguous().detach())
logits_fake = self.discriminator(reconstructions.contiguous().detach())
else:
logits_real = self.discriminator(torch.cat((inputs.contiguous().detach(), cond), dim=1))
logits_fake = self.discriminator(torch.cat((reconstructions.contiguous().detach(), cond), dim=1))
disc_factor = adopt_weight(self.disc_factor, global_step, threshold=self.discriminator_iter_start)
d_loss = disc_factor * self.disc_loss(logits_real, logits_fake)
log = {"{}/disc_loss".format(split): d_loss.clone().detach().mean(),
"{}/logits_real".format(split): logits_real.detach().mean(),
"{}/logits_fake".format(split): logits_fake.detach().mean()
}
if return_dic:
loss_dic = {}
loss_dic["{}/disc_loss".format(split)] = d_loss.clone().detach().mean()
loss_dic["{}/logits_real".format(split)] = logits_real.detach().mean()
loss_dic["{}/logits_fake".format(split)] = logits_fake.detach().mean()
return d_loss, log, loss_dic
return d_loss, log