MathSolverAI / app.py
NihalGazi's picture
Update app.py
ac7ce3b verified
import gradio as gr
import google.generativeai as genai
from google.generativeai.types import HarmCategory, HarmBlockThreshold
import sympy as sp
# Set up the Gemini generative model using your API key
model = genai.GenerativeModel("gemini-1.5-flash", api_key="AIzaSyCjAahw7YvVFWSYHWRaGwZ9cA9emobfNok")
# Define the functions Gemini will call
def algebra_simplification(expression):
import sympy as sp
try:
expr = sp.sympify(expression)
simplified_expr = sp.simplify(expr)
return str(simplified_expr)
except Exception as e:
return f"Error: {str(e)}"
def algebra_solve(equation):
import sympy as sp
try:
eq = sp.sympify(equation)
variables = list(eq.free_symbols)
solutions = sp.solve(eq, *variables)
return str(solutions)
except Exception as e:
return f"Error: {str(e)}"
# Chat model and function calling logic
def gemini_chat(math_problem):
chat = model.start_chat(history=[])
# Gemini model should figure out whether to call the appropriate function
response = chat.send_message(math_problem, functions=[
{
"name": "algebra_simplification",
"parameters": {
"expression": math_problem
},
"fn": algebra_simplification
},
{
"name": "algebra_solve",
"parameters": {
"equation": math_problem
},
"fn": algebra_solve
}
], function_call="auto") # Set function_call to 'auto'
return response.text
# Gradio Interface
def process_math_problem(math_problem):
# Use Gemini's auto function calling to process the math problem
return gemini_chat(math_problem)
with gr.Blocks() as demo:
gr.Markdown("# Gemini Algebra Solver")
input_problem = gr.Textbox(label="Enter a Math Problem", placeholder="e.g., Simplify (x^2 - 4)/(x - 2) or Solve x^2 - 4 = 0")
output_solution = gr.Textbox(label="Solution")
solve_button = gr.Button("Solve")
solve_button.click(fn=process_math_problem, inputs=input_problem, outputs=output_solution)
demo.launch()