Spaces:
Sleeping
Sleeping
Commit
·
c94ba08
1
Parent(s):
e9b9cc0
fix
Browse files
app.py
CHANGED
@@ -6,6 +6,7 @@ import cas12
|
|
6 |
import pandas as pd
|
7 |
import streamlit as st
|
8 |
import plotly.graph_objs as go
|
|
|
9 |
import numpy as np
|
10 |
from pathlib import Path
|
11 |
|
@@ -95,9 +96,29 @@ if selected_model == 'Cas9':
|
|
95 |
('on-target', 'off-target'),
|
96 |
key='target_selection'
|
97 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
# Gene symbol entry
|
99 |
gene_symbol = st.text_input('Enter a Gene Symbol:', placeholder="e.g., FOXA1", key='gene_symbol')
|
100 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
if target_selection == 'on-target':
|
102 |
# Prediction button
|
103 |
predict_button = st.button('Predict on-target')
|
@@ -114,21 +135,12 @@ if selected_model == 'Cas9':
|
|
114 |
st.success('Prediction completed!')
|
115 |
st.session_state['prediction_made'] = True
|
116 |
|
|
|
117 |
if 'on_target_results' in st.session_state and st.session_state['on_target_results']:
|
118 |
# Include "Target" in the DataFrame's columns
|
119 |
df = pd.DataFrame(st.session_state['on_target_results'],
|
120 |
columns=["Gene ID", "Start Pos", "End Pos", "Strand", "Target", "gRNA", "Prediction"])
|
121 |
st.dataframe(df)
|
122 |
-
# Define file paths
|
123 |
-
genbank_file_path = f"{gene_symbol}_crispr_targets.gb"
|
124 |
-
bed_file_path = f"{gene_symbol}_crispr_targets.bed"
|
125 |
-
csv_file_path = f"{gene_symbol}_crispr_predictions.csv"
|
126 |
-
|
127 |
-
# Generate files
|
128 |
-
cas9on.generate_genbank_file_from_df(df, gene_sequence, gene_symbol, genbank_file_path)
|
129 |
-
cas9on.create_bed_file_from_df(df, bed_file_path)
|
130 |
-
cas9on.create_csv_from_df(df, csv_file_path)
|
131 |
-
|
132 |
# Now create a Plotly plot with the sorted_predictions
|
133 |
fig = go.Figure()
|
134 |
|
@@ -184,27 +196,43 @@ if selected_model == 'Cas9':
|
|
184 |
),
|
185 |
showlegend=False # Hide the legend if it's not necessary
|
186 |
)
|
|
|
187 |
# Display the plot
|
188 |
st.plotly_chart(fig)
|
189 |
-
# Download buttons
|
190 |
-
col1, col2, col3 = st.columns(3)
|
191 |
-
with col1:
|
192 |
-
with open(genbank_file_path, "rb") as file:
|
193 |
-
st.download_button(label="Download GenBank File", data=file, file_name=genbank_file_path,
|
194 |
-
mime="text/x-genbank")
|
195 |
-
with col2:
|
196 |
-
with open(bed_file_path, "rb") as file:
|
197 |
-
st.download_button(label="Download BED File", data=file, file_name=bed_file_path,
|
198 |
-
mime="text/plain")
|
199 |
-
with col3:
|
200 |
-
with open(csv_file_path, "rb") as file:
|
201 |
-
st.download_button(label="Download CSV File", data=file, file_name=csv_file_path,
|
202 |
-
mime="text/csv")
|
203 |
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
208 |
|
209 |
|
210 |
elif target_selection == 'off-target':
|
@@ -297,11 +325,31 @@ elif selected_model == 'Cas12':
|
|
297 |
# Gene symbol entry
|
298 |
gene_symbol = st.text_input('Enter a Gene Symbol:', placeholder="e.g., FOXA1", key='gene_symbol')
|
299 |
|
|
|
|
|
|
|
|
|
300 |
# Prediction button
|
301 |
predict_button = st.button('Predict on-target')
|
302 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
303 |
# Process predictions
|
304 |
if predict_button and gene_symbol:
|
|
|
|
|
|
|
305 |
# Run the prediction process
|
306 |
with st.spinner('Predicting... Please wait'):
|
307 |
predictions, gene_sequence = cas12.process_gene(gene_symbol,cas12_path)
|
|
|
6 |
import pandas as pd
|
7 |
import streamlit as st
|
8 |
import plotly.graph_objs as go
|
9 |
+
from pygenomeviz import Genbank, GenomeViz
|
10 |
import numpy as np
|
11 |
from pathlib import Path
|
12 |
|
|
|
96 |
('on-target', 'off-target'),
|
97 |
key='target_selection'
|
98 |
)
|
99 |
+
if 'current_gene_symbol' not in st.session_state:
|
100 |
+
st.session_state['current_gene_symbol'] = ""
|
101 |
+
|
102 |
+
# Define a function to clean up old files
|
103 |
+
def clean_up_old_files(gene_symbol):
|
104 |
+
genbank_file_path = f"{gene_symbol}_crispr_targets.gb"
|
105 |
+
bed_file_path = f"{gene_symbol}_crispr_targets.bed"
|
106 |
+
csv_file_path = f"{gene_symbol}_crispr_predictions.csv"
|
107 |
+
for path in [genbank_file_path, bed_file_path, csv_file_path]:
|
108 |
+
if os.path.exists(path):
|
109 |
+
os.remove(path)
|
110 |
+
|
111 |
# Gene symbol entry
|
112 |
gene_symbol = st.text_input('Enter a Gene Symbol:', placeholder="e.g., FOXA1", key='gene_symbol')
|
113 |
|
114 |
+
# Handle gene symbol change and file cleanup
|
115 |
+
if gene_symbol != st.session_state['current_gene_symbol'] and gene_symbol:
|
116 |
+
if st.session_state['current_gene_symbol']:
|
117 |
+
# Clean up files only if a different gene symbol is entered and a previous symbol exists
|
118 |
+
clean_up_old_files(st.session_state['current_gene_symbol'])
|
119 |
+
# Update the session state with the new gene symbol
|
120 |
+
st.session_state['current_gene_symbol'] = gene_symbol
|
121 |
+
|
122 |
if target_selection == 'on-target':
|
123 |
# Prediction button
|
124 |
predict_button = st.button('Predict on-target')
|
|
|
135 |
st.success('Prediction completed!')
|
136 |
st.session_state['prediction_made'] = True
|
137 |
|
138 |
+
|
139 |
if 'on_target_results' in st.session_state and st.session_state['on_target_results']:
|
140 |
# Include "Target" in the DataFrame's columns
|
141 |
df = pd.DataFrame(st.session_state['on_target_results'],
|
142 |
columns=["Gene ID", "Start Pos", "End Pos", "Strand", "Target", "gRNA", "Prediction"])
|
143 |
st.dataframe(df)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
# Now create a Plotly plot with the sorted_predictions
|
145 |
fig = go.Figure()
|
146 |
|
|
|
196 |
),
|
197 |
showlegend=False # Hide the legend if it's not necessary
|
198 |
)
|
199 |
+
|
200 |
# Display the plot
|
201 |
st.plotly_chart(fig)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
202 |
|
203 |
+
if 'gene_sequence' in st.session_state and st.session_state['gene_sequence']:
|
204 |
+
gene_symbol = st.session_state['current_gene_symbol']
|
205 |
+
gene_sequence = st.session_state['gene_sequence']
|
206 |
+
|
207 |
+
# Define file paths
|
208 |
+
genbank_file_path = f"{gene_symbol}_crispr_targets.gb"
|
209 |
+
bed_file_path = f"{gene_symbol}_crispr_targets.bed"
|
210 |
+
csv_file_path = f"{gene_symbol}_crispr_predictions.csv"
|
211 |
+
|
212 |
+
# Generate files
|
213 |
+
cas9on.generate_genbank_file_from_df(df, gene_sequence, gene_symbol, genbank_file_path)
|
214 |
+
cas9on.create_bed_file_from_df(df, bed_file_path)
|
215 |
+
cas9on.create_csv_from_df(df, csv_file_path)
|
216 |
+
|
217 |
+
# Layout for download buttons
|
218 |
+
col1, col2, col3 = st.columns(3)
|
219 |
+
with col1:
|
220 |
+
with open(genbank_file_path, "rb") as file:
|
221 |
+
st.download_button(label="Download GenBank File", data=file, file_name=genbank_file_path,
|
222 |
+
mime="text/x-genbank")
|
223 |
+
with col2:
|
224 |
+
with open(bed_file_path, "rb") as file:
|
225 |
+
st.download_button(label="Download BED File", data=file, file_name=bed_file_path,
|
226 |
+
mime="text/plain")
|
227 |
+
with col3:
|
228 |
+
with open(csv_file_path, "rb") as file:
|
229 |
+
st.download_button(label="Download CSV File", data=file, file_name=csv_file_path,
|
230 |
+
mime="text/csv")
|
231 |
+
|
232 |
+
# Links for user guidance on using the downloaded files
|
233 |
+
st.markdown(
|
234 |
+
"GenBank files can be visualized using [PyGenomeViz](https://pygenomeviz.streamlit.app/). "
|
235 |
+
"BED files can be used with the [UCSC Genome Browser](https://genome.ucsc.edu/cgi-bin/hgCustom).")
|
236 |
|
237 |
|
238 |
elif target_selection == 'off-target':
|
|
|
325 |
# Gene symbol entry
|
326 |
gene_symbol = st.text_input('Enter a Gene Symbol:', placeholder="e.g., FOXA1", key='gene_symbol')
|
327 |
|
328 |
+
# Initialize the current_gene_symbol in the session state if it doesn't exist
|
329 |
+
if 'current_gene_symbol' not in st.session_state:
|
330 |
+
st.session_state['current_gene_symbol'] = ""
|
331 |
+
|
332 |
# Prediction button
|
333 |
predict_button = st.button('Predict on-target')
|
334 |
|
335 |
+
# Function to clean up old files
|
336 |
+
def clean_up_old_files(gene_symbol):
|
337 |
+
genbank_file_path = f"{gene_symbol}_crispr_targets.gb"
|
338 |
+
bed_file_path = f"{gene_symbol}_crispr_targets.bed"
|
339 |
+
csv_file_path = f"{gene_symbol}_crispr_predictions.csv"
|
340 |
+
for path in [genbank_file_path, bed_file_path, csv_file_path]:
|
341 |
+
if os.path.exists(path):
|
342 |
+
os.remove(path)
|
343 |
+
|
344 |
+
# Clean up files if a new gene symbol is entered
|
345 |
+
if st.session_state['current_gene_symbol'] and gene_symbol != st.session_state['current_gene_symbol']:
|
346 |
+
clean_up_old_files(st.session_state['current_gene_symbol'])
|
347 |
+
|
348 |
# Process predictions
|
349 |
if predict_button and gene_symbol:
|
350 |
+
# Update the current gene symbol
|
351 |
+
st.session_state['current_gene_symbol'] = gene_symbol
|
352 |
+
|
353 |
# Run the prediction process
|
354 |
with st.spinner('Predicting... Please wait'):
|
355 |
predictions, gene_sequence = cas12.process_gene(gene_symbol,cas12_path)
|