|
import torch |
|
import pickle |
|
import whisper |
|
import streamlit as st |
|
import torchaudio as ta |
|
|
|
from io import BytesIO |
|
from transformers import WhisperProcessor, WhisperForConditionalGeneration |
|
|
|
|
|
device = "cuda:0" if torch.cuda.is_available() else "cpu" |
|
torch_dtype = torch.float16 if device == "cuda:0" else torch.float32 |
|
|
|
SAMPLING_RATE = 16000 |
|
|
|
|
|
processor = WhisperProcessor.from_pretrained("openai/whisper-small") |
|
model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small") |
|
|
|
|
|
st.title("Audio Player with Live Transcription") |
|
|
|
|
|
st.sidebar.header("Upload Audio Files") |
|
uploaded_files = st.sidebar.file_uploader("Choose audio files", type=["mp3", "wav"], accept_multiple_files=True) |
|
submit_button = st.sidebar.button("Submit") |
|
|
|
|
|
if 'audio_files' not in st.session_state: |
|
st.session_state.audio_files = [] |
|
st.session_state.transcriptions = {} |
|
st.session_state.translations = {} |
|
st.session_state.detected_languages = [] |
|
st.session_state.waveforms = [] |
|
|
|
|
|
def detect_language(audio_file): |
|
whisper_model = whisper.load_model("small") |
|
trimmed_audio = whisper.pad_or_trim(audio_file) |
|
mel = whisper.log_mel_spectrogram(trimmed_audio).to(whisper_model.device) |
|
_, probs = whisper_model.detect_language(mel[0]) |
|
detected_lang = max(probs, key=probs.get) |
|
print(f"Detected language: {detected_lang}") |
|
return detected_lang |
|
|
|
|
|
|
|
if submit_button and uploaded_files is not None: |
|
st.session_state.audio_files = uploaded_files |
|
st.session_state.detected_languages = [] |
|
|
|
for uploaded_file in uploaded_files: |
|
waveform, sampling_rate = ta.load(BytesIO(uploaded_file.read())) |
|
if sampling_rate != SAMPLING_RATE: |
|
waveform = ta.functional.resample(waveform, orig_freq=sampling_rate, new_freq=SAMPLING_RATE) |
|
|
|
st.session_state.waveforms.append(waveform) |
|
detected_language = detect_language(waveform) |
|
st.session_state.detected_languages.append(detected_language) |
|
|
|
|
|
if 'audio_files' in st.session_state and st.session_state.audio_files: |
|
for i, uploaded_file in enumerate(st.session_state.audio_files): |
|
col1, col2 = st.columns([1, 3]) |
|
|
|
with col1: |
|
st.write(f"**File name**: {uploaded_file.name}") |
|
st.audio(BytesIO(uploaded_file.read()), format=uploaded_file.type) |
|
st.write(f"**Detected Language**: {st.session_state.detected_languages[i]}") |
|
|
|
with col2: |
|
|
|
input_features = processor(st.session_state.waveforms[i][0], sampling_rate=SAMPLING_RATE, return_tensors='pt').input_features |
|
|
|
if st.button(f"Transcribe {uploaded_file.name}"): |
|
predicted_ids = model.generate(input_features) |
|
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True) |
|
st.session_state.transcriptions[i] = transcription |
|
|
|
if st.session_state.transcriptions.get(i): |
|
st.write("**Transcription**:") |
|
for line in st.session_state.transcriptions[i]: |
|
st.write(line) |
|
|
|
if st.button(f"Translate {uploaded_file.name}"): |
|
with open('languages.pkl', 'rb') as f: |
|
lang_dict = pickle.load(f) |
|
detected_language_name = lang_dict[st.session_state.detected_languages[i]] |
|
|
|
forced_decoder_ids = processor.get_decoder_prompt_ids(language=detected_language_name, task="translate") |
|
predicted_ids = model.generate(input_features, forced_decoder_ids=forced_decoder_ids) |
|
translation = processor.batch_decode(predicted_ids, skip_special_tokens=True) |
|
st.session_state.translations[i] = translation |
|
|
|
if st.session_state.translations.get(i): |
|
st.write("**Translation**:") |
|
for line in st.session_state.translations[i]: |
|
st.write(line) |
|
|