File size: 6,065 Bytes
ff5aa27
 
 
 
 
 
 
dfe2ca6
 
42af183
ff5aa27
 
dfe2ca6
 
42af183
 
ff5aa27
8d692ce
f7e7a16
ff5aa27
 
 
 
 
f7e7a16
ff5aa27
f7e7a16
dfe2ca6
ff5aa27
 
 
 
 
8d692ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ff5aa27
 
f7e7a16
ff5aa27
 
 
 
 
f7e7a16
ff5aa27
f7e7a16
dfe2ca6
ff5aa27
 
 
 
 
 
 
 
75e81bf
 
ff5aa27
 
 
 
 
 
 
8708d98
ff5aa27
 
 
 
 
 
 
 
 
 
 
 
f7e7a16
ff5aa27
 
 
 
 
f7e7a16
ff5aa27
f7e7a16
dfe2ca6
ff5aa27
 
 
 
 
 
75e81bf
 
ff5aa27
 
 
 
 
 
8708d98
ff5aa27
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import whisper
from modules.subtitle_manager import get_srt,get_vtt,write_srt,write_vtt,safe_filename
from modules.youtube_manager import get_ytdata,get_ytaudio
import gradio as gr
import os
from datetime import datetime

DEFAULT_MODEL_SIZE="large-v2"

class WhisperInference():
    def __init__(self):
        print("\nInitializing Model..\n")
        self.current_model_size = DEFAULT_MODEL_SIZE
        self.model = whisper.load_model(name=DEFAULT_MODEL_SIZE,download_root="models")
        self.available_models = whisper.available_models()
        self.available_langs = sorted(list(whisper.tokenizer.LANGUAGES.values()))

    def transcribe_file(self,fileobjs
                        ,model_size,lang,subformat,istranslate,
                        progress=gr.Progress()):
        
        def progress_callback(progress_value):
            progress(progress_value,desc="Transcribing..")
        
        if model_size != self.current_model_size:
            progress(0,desc="Initializing Model..")
            self.current_model_size = model_size
            self.model = whisper.load_model(name=model_size,download_root="models")

        if lang == "Automatic Detection" :
            lang = None    

        progress(0,desc="Loading Audio..")    

        files_info = {}
        for fileobj in fileobjs: 
            audio = whisper.load_audio(fileobj.name)

            translatable_model = ["large","large-v1","large-v2"]
            if istranslate and self.current_model_size in translatable_model:
                result = self.model.transcribe(audio=audio,language=lang,verbose=False,task="translate",progress_callback=progress_callback)
            else : 
                result = self.model.transcribe(audio=audio,language=lang,verbose=False,progress_callback=progress_callback)

            progress(1,desc="Completed!")

            file_name, file_ext = os.path.splitext(os.path.basename(fileobj.orig_name))
            file_name = file_name[:-9]
            file_name = safe_filename(file_name)
            timestamp = datetime.now().strftime("%m%d%H%M%S")
            output_path = f"outputs/{file_name}-{timestamp}"

            if subformat == "SRT":
                subtitle = get_srt(result["segments"])
                write_srt(subtitle,f"{output_path}.srt")
            elif subformat == "WebVTT":
                subtitle = get_vtt(result["segments"])
                write_vtt(subtitle,f"{output_path}.vtt")  

            files_info[file_name] = subtitle

        total_result = ''
        for file_name,subtitle in files_info.items():
            total_result+='------------------------------------\n'
            total_result+=f'{file_name}\n\n'  
            total_result+=f'{subtitle}'  

        return f"Done! Subtitle is in the outputs folder.\n\n{total_result}"
    
    def transcribe_youtube(self,youtubelink
                        ,model_size,lang,subformat,istranslate,
                        progress=gr.Progress()):
        
        def progress_callback(progress_value):
            progress(progress_value,desc="Transcribing..")

        if model_size != self.current_model_size:
            progress(0,desc="Initializing Model..")
            self.current_model_size = model_size
            self.model = whisper.load_model(name=model_size,download_root="models")

        if lang == "Automatic Detection" :
            lang = None    

        progress(0,desc="Loading Audio from Youtube..")    
        yt = get_ytdata(youtubelink)
        audio = whisper.load_audio(get_ytaudio(yt))

        translatable_model = ["large","large-v1","large-v2"]
        if istranslate and self.current_model_size in translatable_model:
            result = self.model.transcribe(audio=audio,language=lang,verbose=False,task="translate",progress_callback=progress_callback)
        else : 
            result = self.model.transcribe(audio=audio,language=lang,verbose=False,progress_callback=progress_callback)

        progress(1,desc="Completed!")

        file_name = safe_filename(yt.title)
        timestamp = datetime.now().strftime("%m%d%H%M%S")
        output_path = f"outputs/{file_name}-{timestamp}"

        if subformat == "SRT":
            subtitle = get_srt(result["segments"])
            write_srt(subtitle,f"{output_path}.srt")
        elif subformat == "WebVTT":
            subtitle = get_vtt(result["segments"])
            write_vtt(subtitle,f"{output_path}.vtt")   

        return f"Done! Subtitle file is in the outputs folder.\n\n{subtitle}"
    
    def transcribe_mic(self,micaudio
                    ,model_size,lang,subformat,istranslate,
                    progress=gr.Progress()):

        def progress_callback(progress_value):
            progress(progress_value,desc="Transcribing..")
        
        if model_size != self.current_model_size:
            progress(0,desc="Initializing Model..")
            self.current_model_size = model_size
            self.model = whisper.load_model(name=model_size,download_root="models")

        if lang == "Automatic Detection" :
            lang = None    

        progress(0,desc="Loading Audio..")    

        translatable_model = ["large","large-v1","large-v2"]
        if istranslate and self.current_model_size in translatable_model:
            result = self.model.transcribe(audio=micaudio,language=lang,verbose=False,task="translate",progress_callback=progress_callback)
        else : 
            result = self.model.transcribe(audio=micaudio,language=lang,verbose=False,progress_callback=progress_callback)

        progress(1,desc="Completed!")

        timestamp = datetime.now().strftime("%m%d%H%M%S")
        output_path = f"outputs/Mic-{timestamp}"

        if subformat == "SRT":
            subtitle = get_srt(result["segments"])
            write_srt(subtitle,f"{output_path}.srt")
        elif subformat == "WebVTT":
            subtitle = get_vtt(result["segments"])
            write_vtt(subtitle,f"{output_path}.vtt")   
            
        return f"Done! Subtitle file is in the outputs folder.\n\n{subtitle}"