Spaces:
Sleeping
Sleeping
File size: 7,018 Bytes
ff5aa27 8762e3a 43820de ff5aa27 43820de ff5aa27 6eeb731 6041518 ff5aa27 6eeb731 036b97d a0164a7 036b97d a0164a7 036b97d a0164a7 036b97d 6eeb731 42af183 43820de ff5aa27 a0164a7 ff5aa27 a0164a7 ff5aa27 8d692ce ff5aa27 a0164a7 ff5aa27 a0164a7 ff5aa27 a0164a7 ff5aa27 a0164a7 6041518 a0164a7 ff5aa27 a0164a7 ff5aa27 a0164a7 ff5aa27 a0164a7 ff5aa27 a0164a7 ff5aa27 a0164a7 ff5aa27 a0164a7 6041518 a0164a7 ff5aa27 a0164a7 ff5aa27 a0164a7 ff5aa27 a0164a7 ff5aa27 a0164a7 ff5aa27 a0164a7 ff5aa27 a0164a7 6041518 a0164a7 ff5aa27 43820de a0164a7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 |
import gradio as gr
from modules.whisper_Inference import WhisperInference
from modules.nllb_inference import NLLBInference
import os
from ui.htmls import *
from modules.youtube_manager import get_ytmetas
def open_fodler(folder_path):
if os.path.exists(folder_path):
os.system(f"start {folder_path}")
else:
print(f"The folder {folder_path} does not exist.")
def on_change_models(model_size):
translatable_model = ["large", "large-v1", "large-v2"]
if model_size not in translatable_model:
return gr.Checkbox.update(visible=False, value=False, interactive=False)
else:
return gr.Checkbox.update(visible=True, value=False, label="Translate to English?", interactive=True)
whisper_inf = WhisperInference()
nllb_inf = NLLBInference()
block = gr.Blocks(css=CSS).queue(api_open=False)
with block:
with gr.Row():
with gr.Column():
gr.Markdown(MARKDOWN, elem_id="md_project")
with gr.Tabs():
with gr.TabItem("File"): # tab1
with gr.Row():
input_file = gr.Files(type="file", label="Upload File here")
with gr.Row():
dd_model = gr.Dropdown(choices=whisper_inf.available_models, value="large-v2", label="Model")
dd_lang = gr.Dropdown(choices=["Automatic Detection"] + whisper_inf.available_langs,
value="Automatic Detection", label="Language")
dd_subformat = gr.Dropdown(["SRT", "WebVTT"], value="SRT", label="Subtitle Format")
with gr.Row():
cb_translate = gr.Checkbox(value=False, label="Translate to English?", interactive=True)
with gr.Row():
btn_run = gr.Button("GENERATE SUBTITLE FILE", variant="primary")
with gr.Row():
tb_indicator = gr.Textbox(label="Output")
btn_openfolder = gr.Button('π').style(full_width=False)
btn_run.click(fn=whisper_inf.transcribe_file,
inputs=[input_file, dd_model, dd_lang, dd_subformat, cb_translate], outputs=[tb_indicator])
btn_openfolder.click(fn=lambda: open_fodler("outputs"), inputs=None, outputs=None)
dd_model.change(fn=on_change_models, inputs=[dd_model], outputs=[cb_translate])
with gr.TabItem("Youtube"): # tab2
with gr.Row():
tb_youtubelink = gr.Textbox(label="Youtube Link")
with gr.Row().style(equal_height=True):
with gr.Column():
img_thumbnail = gr.Image(label="Youtube Thumbnail")
with gr.Column():
tb_title = gr.Label(label="Youtube Title")
tb_description = gr.Textbox(label="Youtube Description", max_lines=15)
with gr.Row():
dd_model = gr.Dropdown(choices=whisper_inf.available_models, value="large-v2", label="Model")
dd_lang = gr.Dropdown(choices=["Automatic Detection"] + whisper_inf.available_langs,
value="Automatic Detection", label="Language")
dd_subformat = gr.Dropdown(choices=["SRT", "WebVTT"], value="SRT", label="Subtitle Format")
with gr.Row():
cb_translate = gr.Checkbox(value=False, label="Translate to English?", interactive=True)
with gr.Row():
btn_run = gr.Button("GENERATE SUBTITLE FILE", variant="primary")
with gr.Row():
tb_indicator = gr.Textbox(label="Output")
btn_openfolder = gr.Button('π').style(full_width=False)
btn_run.click(fn=whisper_inf.transcribe_youtube,
inputs=[tb_youtubelink, dd_model, dd_lang, dd_subformat, cb_translate],
outputs=[tb_indicator])
tb_youtubelink.change(get_ytmetas, inputs=[tb_youtubelink],
outputs=[img_thumbnail, tb_title, tb_description])
btn_openfolder.click(fn=lambda: open_fodler("outputs"), inputs=None, outputs=None)
dd_model.change(fn=on_change_models, inputs=[dd_model], outputs=[cb_translate])
with gr.TabItem("Mic"): # tab3
with gr.Row():
mic_input = gr.Microphone(label="Record with Mic", type="filepath", interactive=True)
with gr.Row():
dd_model = gr.Dropdown(choices=whisper_inf.available_models, value="large-v2", label="Model")
dd_lang = gr.Dropdown(choices=["Automatic Detection"] + whisper_inf.available_langs,
value="Automatic Detection", label="Language")
dd_subformat = gr.Dropdown(["SRT", "WebVTT"], value="SRT", label="Subtitle Format")
with gr.Row():
cb_translate = gr.Checkbox(value=False, label="Translate to English?", interactive=True)
with gr.Row():
btn_run = gr.Button("GENERATE SUBTITLE FILE", variant="primary")
with gr.Row():
tb_indicator = gr.Textbox(label="Output")
btn_openfolder = gr.Button('π').style(full_width=False)
btn_run.click(fn=whisper_inf.transcribe_mic,
inputs=[mic_input, dd_model, dd_lang, dd_subformat, cb_translate], outputs=[tb_indicator])
btn_openfolder.click(fn=lambda: open_fodler("outputs"), inputs=None, outputs=None)
dd_model.change(fn=on_change_models, inputs=[dd_model], outputs=[cb_translate])
with gr.TabItem("T2T Translation"): # tab 4
with gr.Row():
file_subs = gr.Files(type="file", label="Upload Subtitle Files to translate here",
file_types=['.vtt', '.srt'])
with gr.TabItem("NLLB"): # sub tab1
with gr.Row():
dd_nllb_model = gr.Dropdown(label="Model", value=nllb_inf.default_model_size,
choices=nllb_inf.available_models)
dd_nllb_sourcelang = gr.Dropdown(label="Source Language", choices=nllb_inf.available_source_langs)
dd_nllb_targetlang = gr.Dropdown(label="Target Language", choices=nllb_inf.available_target_langs)
with gr.Row():
btn_run = gr.Button("TRANSLATE SUBTITLE FILE", variant="primary")
with gr.Row():
tb_indicator = gr.Textbox(label="Output")
btn_openfolder = gr.Button('π').style(full_width=False)
with gr.Column():
md_vram_table = gr.HTML(NLLB_VRAM_TABLE, elem_id="md_nllb_vram_table")
btn_run.click(fn=nllb_inf.translate_file,
inputs=[file_subs, dd_nllb_model, dd_nllb_sourcelang, dd_nllb_targetlang],
outputs=[tb_indicator])
btn_openfolder.click(fn=lambda: open_fodler("outputs\\translations"), inputs=None, outputs=None)
block.launch()
|