Spaces:
Build error
Build error
File size: 15,043 Bytes
51a7969 8224d2b 9004b7f 51a7969 9004b7f e0b30b2 9004b7f 51a7969 9004b7f 51a7969 cbec9d4 9004b7f 51a7969 9004b7f c9c0d41 9004b7f 5096125 9004b7f c9c0d41 9004b7f 5096125 9004b7f c9c0d41 9004b7f 5096125 9004b7f c9c0d41 9004b7f 5096125 9004b7f c9c0d41 9004b7f 5096125 9004b7f 51a7969 9004b7f 4bc8ae4 9004b7f 51a7969 9004b7f 51a7969 9004b7f 51a7969 9004b7f 51a7969 9004b7f 51a7969 9004b7f 0b75af5 9004b7f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 |
# import os
# import json
# import gradio as gr
# import spaces
# import torch
# from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForSequenceClassification
# from sentence_splitter import SentenceSplitter
# from itertools import product
# # Get the Hugging Face token from environment variable
# hf_token = os.getenv('HF_TOKEN')
# cuda_available = torch.cuda.is_available()
# device = torch.device("cpu" if cuda_available else "cpu")
# print(f"Using device: {device}")
# # Initialize paraphraser model and tokenizer
# paraphraser_model_name = "NoaiGPT/777"
# paraphraser_tokenizer = AutoTokenizer.from_pretrained(paraphraser_model_name, use_auth_token=hf_token)
# paraphraser_model = AutoModelForSeq2SeqLM.from_pretrained(paraphraser_model_name, use_auth_token=hf_token).to(device)
# # Initialize classifier model and tokenizer
# classifier_model_name = "andreas122001/roberta-mixed-detector"
# classifier_tokenizer = AutoTokenizer.from_pretrained(classifier_model_name)
# classifier_model = AutoModelForSequenceClassification.from_pretrained(classifier_model_name).to(device)
# # Initialize sentence splitter
# splitter = SentenceSplitter(language='en')
# def classify_text(text):
# inputs = classifier_tokenizer(text, return_tensors="pt", truncation=True, max_length=512).to(device)
# with torch.no_grad():
# outputs = classifier_model(**inputs)
# probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1)
# predicted_class = torch.argmax(probabilities, dim=-1).item()
# main_label = classifier_model.config.id2label[predicted_class]
# main_score = probabilities[0][predicted_class].item()
# return main_label, main_score
# # @spaces.GPU
# def generate_paraphrases(text, setting, output_format):
# sentences = splitter.split(text)
# all_sentence_paraphrases = []
# if setting == 1:
# num_return_sequences = 5
# repetition_penalty = 1.1
# no_repeat_ngram_size = 2
# temperature = 1.0
# max_length = 128
# elif setting == 2:
# num_return_sequences = 10
# repetition_penalty = 1.2
# no_repeat_ngram_size = 3
# temperature = 1.2
# max_length = 192
# elif setting == 3:
# num_return_sequences = 15
# repetition_penalty = 1.3
# no_repeat_ngram_size = 4
# temperature = 1.4
# max_length = 256
# elif setting == 4:
# num_return_sequences = 20
# repetition_penalty = 1.4
# no_repeat_ngram_size = 5
# temperature = 1.6
# max_length = 320
# else:
# num_return_sequences = 25
# repetition_penalty = 1.5
# no_repeat_ngram_size = 6
# temperature = 1.8
# max_length = 384
# top_k = 50
# top_p = 0.95
# length_penalty = 1.0
# formatted_output = "Original text:\n" + text + "\n\n"
# formatted_output += "Paraphrased versions:\n"
# json_output = {
# "original_text": text,
# "paraphrased_versions": [],
# "combined_versions": [],
# "human_like_versions": []
# }
# for i, sentence in enumerate(sentences):
# inputs = paraphraser_tokenizer(f'paraphraser: {sentence}', return_tensors="pt", padding="longest", truncation=True, max_length=max_length).to(device)
# # Generate paraphrases using the specified parameters
# outputs = paraphraser_model.generate(
# inputs.input_ids,
# attention_mask=inputs.attention_mask,
# num_return_sequences=num_return_sequences,
# repetition_penalty=repetition_penalty,
# no_repeat_ngram_size=no_repeat_ngram_size,
# temperature=temperature,
# max_length=max_length,
# top_k=top_k,
# top_p=top_p,
# do_sample=True,
# early_stopping=False,
# length_penalty=length_penalty
# )
# paraphrases = paraphraser_tokenizer.batch_decode(outputs, skip_special_tokens=True)
# formatted_output += f"Original sentence {i+1}: {sentence}\n"
# for j, paraphrase in enumerate(paraphrases, 1):
# formatted_output += f" Paraphrase {j}: {paraphrase}\n"
# json_output["paraphrased_versions"].append({
# f"original_sentence_{i+1}": sentence,
# "paraphrases": paraphrases
# })
# all_sentence_paraphrases.append(paraphrases)
# formatted_output += "\n"
# all_combinations = list(product(*all_sentence_paraphrases))
# formatted_output += "\nCombined paraphrased versions:\n"
# combined_versions = []
# for i, combination in enumerate(all_combinations[:50], 1): # Limit to 50 combinations
# combined_paraphrase = " ".join(combination)
# combined_versions.append(combined_paraphrase)
# json_output["combined_versions"] = combined_versions
# # Classify combined versions
# human_versions = []
# for i, version in enumerate(combined_versions, 1):
# label, score = classify_text(version)
# formatted_output += f"Version {i}:\n{version}\n"
# formatted_output += f"Classification: {label} (confidence: {score:.2%})\n\n"
# if label == "human-produced" or (label == "machine-generated" and score < 0.98):
# human_versions.append((version, label, score))
# formatted_output += "\nHuman-like or Less Confident Machine-generated versions:\n"
# for i, (version, label, score) in enumerate(human_versions, 1):
# formatted_output += f"Version {i}:\n{version}\n"
# formatted_output += f"Classification: {label} (confidence: {score:.2%})\n\n"
# json_output["human_like_versions"] = [
# {"version": version, "label": label, "confidence_score": score}
# for version, label, score in human_versions
# ]
# # If no human-like versions, include the top 5 least confident machine-generated versions
# if not human_versions:
# human_versions = sorted([(v, l, s) for v, l, s in zip(combined_versions, [classify_text(v)[0] for v in combined_versions], [classify_text(v)[1] for v in combined_versions])], key=lambda x: x[2])[:5]
# formatted_output += "\nNo human-like versions found. Showing top 5 least confident machine-generated versions:\n"
# for i, (version, label, score) in enumerate(human_versions, 1):
# formatted_output += f"Version {i}:\n{version}\n"
# formatted_output += f"Classification: {label} (confidence: {score:.2%})\n\n"
# if output_format == "text":
# return formatted_output, "\n\n".join([v[0] for v in human_versions])
# else:
# return json.dumps(json_output, indent=2), "\n\n".join([v[0] for v in human_versions])
# # Define the Gradio interface
# iface = gr.Interface(
# fn=generate_paraphrases,
# inputs=[
# gr.Textbox(lines=5, label="Input Text"),
# gr.Slider(minimum=1, maximum=5, step=1, label="Readability to Human-like Setting"),
# gr.Radio(["text", "json"], label="Output Format")
# ],
# outputs=[
# gr.Textbox(lines=20, label="Detailed Paraphrases and Classifications"),
# gr.Textbox(lines=10, label="Human-like or Less Confident Machine-generated Paraphrases")
# ],
# title="Advanced Diverse Paraphraser with Human-like Filter",
# description="Enter a text, select a setting from readable to human-like, and choose the output format to generate diverse paraphrased versions. Combined versions are classified, and those detected as human-produced or less confidently machine-generated are presented in the final output."
# )
# # Launch the interface
# iface.launch()
import os
import json
import gradio as gr
import spaces
import torch
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForSequenceClassification
from sentence_splitter import SentenceSplitter
from itertools import product
# Get the Hugging Face token from environment variable
hf_token = os.getenv('HF_TOKEN')
cuda_available = torch.cuda.is_available()
device = torch.device("cuda" if cuda_available else "cpu")
print(f"Using device: {device}")
# Initialize paraphraser model and tokenizer
paraphraser_model_name = "sharad/ParaphraseGPT"
paraphraser_tokenizer = AutoTokenizer.from_pretrained("humarin/chatgpt_paraphraser_on_T5_base")
paraphraser_model = AutoModelForSeq2SeqLM.from_pretrained(paraphraser_model_name).to(device)
paraphrase_pipeline = pipeline("text2text-generation", model=paraphraser_model, tokenizer=paraphraser_tokenizer, device=0 if cuda_available else -1)
# Initialize classifier model and tokenizer
classifier_model_name = "andreas122001/roberta-mixed-detector"
classifier_tokenizer = AutoTokenizer.from_pretrained(classifier_model_name)
classifier_model = AutoModelForSequenceClassification.from_pretrained(classifier_model_name).to(device)
# Initialize sentence splitter
splitter = SentenceSplitter(language='en')
def classify_text(text):
inputs = classifier_tokenizer(text, return_tensors="pt", truncation=True, max_length=512).to(device)
with torch.no_grad():
outputs = classifier_model(**inputs)
probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1)
predicted_class = torch.argmax(probabilities, dim=-1).item()
main_label = classifier_model.config.id2label[predicted_class]
main_score = probabilities[0][predicted_class].item()
return main_label, main_score
@spaces.GPU
def generate_paraphrases(text, setting, output_format):
sentences = splitter.split(text)
all_sentence_paraphrases = []
if setting == 1:
num_return_sequences = 5
repetition_penalty = 1.1
no_repeat_ngram_size = 2
temperature = 0.9
max_length = 128
elif setting == 2:
num_return_sequences = 5
repetition_penalty = 1.2
no_repeat_ngram_size = 3
temperature = 0.95
max_length = 192
elif setting == 3:
num_return_sequences = 5
repetition_penalty = 1.3
no_repeat_ngram_size = 4
temperature = 1.0
max_length = 256
elif setting == 4:
num_return_sequences = 5
repetition_penalty = 1.4
no_repeat_ngram_size = 5
temperature = 1.05
max_length = 320
else:
num_return_sequences = 5
repetition_penalty = 1.5
no_repeat_ngram_size = 6
temperature = 1.1
max_length = 384
top_k = 50
top_p = 0.95
length_penalty = 1.0
formatted_output = "Original text:\n" + text + "\n\n"
formatted_output += "Paraphrased versions:\n"
json_output = {
"original_text": text,
"paraphrased_versions": [],
"combined_versions": [],
"human_like_versions": []
}
for i, sentence in enumerate(sentences):
paraphrases = paraphrase_pipeline(
sentence,
num_return_sequences=num_return_sequences,
do_sample=True,
top_k=top_k,
top_p=top_p,
temperature=temperature,
no_repeat_ngram_size=no_repeat_ngram_size,
repetition_penalty=repetition_penalty,
max_length=max_length
)
paraphrases_texts = [p['generated_text'] for p in paraphrases]
formatted_output += f"Original sentence {i+1}: {sentence}\n"
for j, paraphrase in enumerate(paraphrases_texts, 1):
formatted_output += f" Paraphrase {j}: {paraphrase}\n"
json_output["paraphrased_versions"].append({
f"original_sentence_{i+1}": sentence,
"paraphrases": paraphrases_texts
})
all_sentence_paraphrases.append(paraphrases_texts)
formatted_output += "\n"
all_combinations = list(product(*all_sentence_paraphrases))
formatted_output += "\nCombined paraphrased versions:\n"
combined_versions = []
for i, combination in enumerate(all_combinations[:50], 1): # Limit to 50 combinations
combined_paraphrase = " ".join(combination)
combined_versions.append(combined_paraphrase)
json_output["combined_versions"] = combined_versions
# Classify combined versions
human_versions = []
for i, version in enumerate(combined_versions, 1):
label, score = classify_text(version)
formatted_output += f"Version {i}:\n{version}\n"
formatted_output += f"Classification: {label} (confidence: {score:.2%})\n\n"
if label == "human-produced" or (label == "machine-generated" and score < 0.98):
human_versions.append((version, label, score))
formatted_output += "\nHuman-like or Less Confident Machine-generated versions:\n"
for i, (version, label, score) in enumerate(human_versions, 1):
formatted_output += f"Version {i}:\n{version}\n"
formatted_output += f"Classification: {label} (confidence: {score:.2%})\n\n"
json_output["human_like_versions"] = [
{"version": version, "label": label, "confidence_score": score}
for version, label, score in human_versions
]
# If no human-like versions, include the top 5 least confident machine-generated versions
if not human_versions:
human_versions = sorted([(v, l, s) for v, l, s in zip(combined_versions, [classify_text(v)[0] for v in combined_versions], [classify_text(v)[1] for v in combined_versions])], key=lambda x: x[2])[:5]
formatted_output += "\nNo human-like versions found. Showing top 5 least confident machine-generated versions:\n"
for i, (version, label, score) in enumerate(human_versions, 1):
formatted_output += f"Version {i}:\n{version}\n"
formatted_output += f"Classification: {label} (confidence: {score:.2%})\n\n"
if output_format == "text":
return formatted_output, "\n\n".join([v[0] for v in human_versions])
else:
return json.dumps(json_output, indent=2), "\n\n".join([v[0] for v in human_versions])
# Define the Gradio interface
iface = gr.Interface(
fn=generate_paraphrases,
inputs=[
gr.Textbox(lines=5, label="Input Text"),
gr.Slider(minimum=1, maximum=5, step=1, label="Readability to Human-like Setting"),
gr.Radio(["text", "json"], label="Output Format")
],
outputs=[
gr.Textbox(lines=20, label="Detailed Paraphrases and Classifications"),
gr.Textbox(lines=10, label="Human-like or Less Confident Machine-generated Paraphrases")
],
title="Advanced Diverse Paraphraser with Human-like Filter",
description="Enter a text, select a setting from readable to human-like, and choose the output format to generate diverse paraphrased versions. Combined versions are classified, and those detected as human-produced or less confidently machine-generated are presented in the final output."
)
# Launch the interface
iface.launch() |