FantasticGNU commited on
Commit
27a3c77
Β·
verified Β·
1 Parent(s): b6672a5

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +19 -18
app.py CHANGED
@@ -37,6 +37,25 @@ import spaces
37
 
38
  image_size = 336
39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40
 
41
  transform = transforms.Compose(
42
  [
@@ -59,24 +78,6 @@ def update_image(image):
59
 
60
  @spaces.GPU
61
  def ad(image_pil, normal_image, box_threshold, text_threshold, text_prompt, background_prompt, cluster_num):
62
- device = "cuda" if torch.cuda.is_available() else "cpu"
63
- univad_model = UniVAD(image_size=image_size).to(device)
64
- ram_model = ram_plus(
65
- pretrained="./ram_plus_swin_large_14m.pth",
66
- image_size=384,
67
- vit="swin_l",
68
- )
69
- ram_model.eval()
70
- ram_model = ram_model.to(device)
71
-
72
-
73
- grounding_model = load_model(
74
- "./UniVAD/models/GroundingDINO/groundingdino/config/GroundingDINO_SwinT_OGC.py",
75
- "./groundingdino_swint_ogc.pth",
76
- "cuda" if torch.cuda.is_available() else "cpu"
77
- )
78
- sam = sam_hq_model_registry["vit_h"]("./sam_hq_vit_h.pth").to(device)
79
- sam_predictor = SamPredictor(sam)
80
  return process_image(image_pil, normal_image, box_threshold, text_threshold, sam_predictor, grounding_model, univad_model, ram_model, text_prompt, background_prompt, cluster_num, image_size)
81
 
82
 
 
37
 
38
  image_size = 336
39
 
40
+ device = "cuda" if torch.cuda.is_available() else "cpu"
41
+ univad_model = UniVAD(image_size=image_size).to(device)
42
+ ram_model = ram_plus(
43
+ pretrained="./ram_plus_swin_large_14m.pth",
44
+ image_size=384,
45
+ vit="swin_l",
46
+ )
47
+ ram_model.eval()
48
+ ram_model = ram_model.to(device)
49
+
50
+
51
+ grounding_model = load_model(
52
+ "./UniVAD/models/GroundingDINO/groundingdino/config/GroundingDINO_SwinT_OGC.py",
53
+ "./groundingdino_swint_ogc.pth",
54
+ "cuda" if torch.cuda.is_available() else "cpu"
55
+ )
56
+ sam = sam_hq_model_registry["vit_h"]("./sam_hq_vit_h.pth").to(device)
57
+ sam_predictor = SamPredictor(sam)
58
+
59
 
60
  transform = transforms.Compose(
61
  [
 
78
 
79
  @spaces.GPU
80
  def ad(image_pil, normal_image, box_threshold, text_threshold, text_prompt, background_prompt, cluster_num):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81
  return process_image(image_pil, normal_image, box_threshold, text_threshold, sam_predictor, grounding_model, univad_model, ram_model, text_prompt, background_prompt, cluster_num, image_size)
82
 
83