FantasticGNU commited on
Commit
bfa4c00
Β·
verified Β·
1 Parent(s): 882912a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -7
app.py CHANGED
@@ -1,8 +1,8 @@
1
  import subprocess
2
 
3
- # subprocess.run(["pip", "install", "-e", "./models/GroundingDINO"])
4
- # subprocess.run(["pip", "install", "gradio==4.21.0"])
5
- # subprocess.run(["pip", "install", "fastapi==0.108.0"])
6
 
7
 
8
 
@@ -10,9 +10,9 @@ import gradio as gr
10
 
11
  from UniVAD.tools import process_image
12
 
13
- # subprocess.run(["wget", "-q","https://github.com/IDEA-Research/GroundingDINO/releases/download/v0.1.0-alpha/groundingdino_swint_ogc.pth"], check=True)
14
- # subprocess.run(["wget", "-q","https://huggingface.co/xinyu1205/recognize-anything-plus-model/resolve/main/ram_plus_swin_large_14m.pth"], check=True)
15
- # subprocess.run(["wget", "-q","https://huggingface.co/lkeab/hq-sam/resolve/main/sam_hq_vit_h.pth"], check=True)
16
 
17
  import torch
18
  import torchvision.transforms as transforms
@@ -33,7 +33,7 @@ from UniVAD.models.grounded_sam import (
33
 
34
 
35
  device = "cuda" if torch.cuda.is_available() else "cpu"
36
- image_size = 224
37
  univad_model = UniVAD(image_size=image_size).to(device)
38
 
39
 
 
1
  import subprocess
2
 
3
+ subprocess.run(["pip", "install", "-e", "./models/GroundingDINO"])
4
+ subprocess.run(["pip", "install", "gradio==4.21.0"])
5
+ subprocess.run(["pip", "install", "fastapi==0.108.0"])
6
 
7
 
8
 
 
10
 
11
  from UniVAD.tools import process_image
12
 
13
+ subprocess.run(["wget", "-q","https://github.com/IDEA-Research/GroundingDINO/releases/download/v0.1.0-alpha/groundingdino_swint_ogc.pth"], check=True)
14
+ subprocess.run(["wget", "-q","https://huggingface.co/xinyu1205/recognize-anything-plus-model/resolve/main/ram_plus_swin_large_14m.pth"], check=True)
15
+ subprocess.run(["wget", "-q","https://huggingface.co/lkeab/hq-sam/resolve/main/sam_hq_vit_h.pth"], check=True)
16
 
17
  import torch
18
  import torchvision.transforms as transforms
 
33
 
34
 
35
  device = "cuda" if torch.cuda.is_available() else "cpu"
36
+ image_size = 335
37
  univad_model = UniVAD(image_size=image_size).to(device)
38
 
39