Spaces:
Running
Running
File size: 11,447 Bytes
c09dbef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
import streamlit as st
from session_state import set_session_state
from chat import chat_completion
from template import qwen_reasoning_prompt, marco_reasoning_prompt
from model_config import reasoning_model_list
def reasoningChat(api_key: str):
set_session_state("reasoning", "", 8192, 0.50)
if st.session_state.reasoning_msg == []:
disable = True
elif st.session_state.reasoning_msg != []:
disable = False
with st.sidebar:
clear_btn = st.button("Clear", "re_clear", type="primary", use_container_width=True, disabled=disable)
undo_btn = st.button("Undo", "re_undo", use_container_width=True, disabled=disable)
retry_btn = st.button("Retry", "re_retry", use_container_width=True, disabled=disable)
model_list = reasoning_model_list
model = st.selectbox("Model", model_list, 0, key="reason_model", disabled=not disable)
st.session_state.reasoning_model = model
if model == "AIDC-AI/Marco-o1":
st.session_state.reasoning_sys = marco_reasoning_prompt
else:
st.session_state.reasoning_sys = qwen_reasoning_prompt
with st.expander("Advanced Setting"):
tokens = st.slider("Max Tokens", 1, 8192, st.session_state.reasoning_tokens, 1, key="re_tokens", disabled=not disable)
temp = st.slider("Temperature", 0.00, 2.00, st.session_state.reasoning_temp, 0.01, key="re_temp", disabled=not disable)
topp = st.slider("Top P", 0.01, 1.00, st.session_state.reasoning_topp, 0.01, key="re_topp", disabled=not disable)
freq = st.slider("Frequency Penalty", -2.00, 2.00, st.session_state.reasoning_freq, 0.01, key="re_freq", disabled=not disable)
pres = st.slider("Presence Penalty", -2.00, 2.00, st.session_state.reasoning_pres, 0.01, key="re_pres", disabled=not disable)
if st.toggle("Set stop", key="re_stop_toggle", disabled=not disable):
st.session_state.reasoning_stop = []
stop_str = st.text_input("Stop", st.session_state.reasoning_stop_str, key="re_stop_str", disabled=not disable)
st.session_state.visual_stop_str = stop_str
submit_stop = st.button("Submit", "re_submit_stop", disabled=not disable)
if submit_stop and stop_str:
st.session_state.reasoning_stop.append(st.session_state.reasoning_stop_str)
st.session_state.reasoning_stop_str = ""
st.rerun()
if st.session_state.reasoning_stop:
for stop_str in st.session_state.reasoning_stop:
st.markdown(f"`{stop_str}`")
st.session_state.reasoning_tokens = tokens
st.session_state.reasoning_temp = temp
st.session_state.reasoning_topp = topp
st.session_state.reasoning_freq = freq
st.session_state.reasoning_pres = pres
if st.session_state.reasoning_model == "Qwen/QVQ-72B-Preview":
from process_image import image_processor
image_type = ["PNG", "JPG", "JPEG"]
uploaded_image: list = st.file_uploader("Upload an image", type=image_type, accept_multiple_files=True, key="re_uploaded_image")
base64_image_list = []
if uploaded_image is not None:
with st.expander("Image"):
for i in uploaded_image:
st.image(uploaded_image, output_format="PNG")
base64_image_list.append(image_processor(i))
for i in st.session_state.reasoning_cache:
with st.chat_message(i["role"]):
st.markdown(i["content"])
if query := st.chat_input("Say something...", key="re_qvq_query", disabled=base64_image_list==[]):
with st.chat_message("user"):
st.markdown(query)
st.session_state.reasoning_msg.append({"role": "user", "content": query})
if len(st.session_state.reasoning_msg) == 1:
messages = [
{"role": "system", "content": st.session_state.reasoning_sys},
{"role": "user", "content": []}
]
for base64_img in base64_image_list:
img_url_obj = {"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{base64_img}", "detail": "high"}}
messages[1]["content"].append(img_url_obj)
messages[1]["content"].append({"type": "text", "text": query})
elif len(st.session_state.reasoning_msg) > 1:
messages = [
{"role": "system", "content": st.session_state.reasoning_sys},
{"role": "user", "content": []}
]
for base64_img in base64_image_list:
img_url_obj = {"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{base64_img}", "detail": "high"}}
messages[1]["content"].append(img_url_obj)
messages[1]["content"].append({"type": "text", "text": st.session_state.reasoning_msg[0]["content"]})
messages += st.session_state.reasoning_msg[1:]
with st.chat_message("assistant"):
try:
response = chat_completion(api_key, model, messages, tokens, temp, topp, freq, pres, st.session_state.reasoning_stop)
result = st.write_stream(chunk.choices[0].delta.content for chunk in response if chunk.choices[0].delta.content is not None)
st.session_state.reasoning_msg.append({"role": "assistant", "content": result})
except Exception as e:
st.error(f"Error occured: {e}")
st.session_state.reasoning_cache = st.session_state.reasoning_msg
st.rerun()
if retry_btn:
st.session_state.reasoning_msg.pop()
st.session_state.reasoning_cache = []
st.session_state.reasoning_retry = True
st.rerun()
if st.session_state.reasoning_retry:
for i in st.session_state.reasoning_msg:
with st.chat_message(i["role"]):
st.markdown(i["content"])
if len(st.session_state.reasoning_msg) == 1:
messages = [
{"role": "system", "content": st.session_state.reasoning_sys},
{"role": "user", "content": []}
]
for base64_img in base64_image_list:
img_url_obj = {"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{base64_img}", "detail": "high"}}
messages[1]["content"].append(img_url_obj)
messages[1]["content"].append({"type": "text", "text": st.session_state.reasoning_msg[0]["content"]})
elif len(st.session_state.reasoning_msg) > 1:
messages = [
{"role": "system", "content": st.session_state.reasoning_sys},
{"role": "user", "content": []}
]
for base64_img in base64_image_list:
img_url_obj = {"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{base64_img}", "detail": "high"}}
messages[1]["content"].append(img_url_obj)
messages[1]["content"].append({"type": "text", "text": st.session_state.reasoning_msg[0]["content"]})
messages += st.session_state.reasoning_msg[1:]
with st.chat_message("assistant"):
try:
response = chat_completion(api_key, model, messages, tokens, temp, topp, freq, pres, st.session_state.reasoning_stop)
result = st.write_stream(chunk.choices[0].delta.content for chunk in response if chunk.choices[0].delta.content is not None)
st.session_state.reasoning_msg.append({"role": "assistant", "content": result})
except Exception as e:
st.error(f"Error occured: {e}")
st.session_state.reasoning_cache = st.session_state.reasoning_msg
st.session_state.reasoning_retry = False
st.rerun()
else:
for i in st.session_state.reasoning_cache:
with st.chat_message(i["role"]):
st.markdown(i["content"])
if query := st.chat_input("Say something...", key="re_query", disabled=model==""):
with st.chat_message("user"):
st.markdown(query)
st.session_state.reasoning_msg.append({"role": "user", "content": query})
messages = [{"role": "system", "content": st.session_state.reasoning_sys}] + st.session_state.reasoning_msg
with st.chat_message("assistant"):
try:
response = chat_completion(api_key, model, messages, tokens, temp, topp, freq, pres, st.session_state.reasoning_stop)
result = st.write_stream(chunk.choices[0].delta.content for chunk in response if chunk.choices[0].delta.content is not None)
st.session_state.reasoning_msg.append({"role": "assistant", "content": result})
except Exception as e:
st.error(f"Error occured: {e}")
st.session_state.reasoning_cache = st.session_state.reasoning_msg
st.rerun()
if retry_btn:
st.session_state.reasoning_msg.pop()
st.session_state.reasoning_cache = []
st.session_state.reasoning_retry = True
st.rerun()
if st.session_state.reasoning_retry:
for i in st.session_state.reasoning_msg:
with st.chat_message(i["role"]):
st.markdown(i["content"])
messages = [{"role": "system", "content": st.session_state.reasoning_sys}] + st.session_state.reasoning_msg
with st.chat_message("assistant"):
try:
response = chat_completion(api_key, model, messages, tokens, temp, topp, freq, pres, st.session_state.reasoning_stop)
result = st.write_stream(chunk.choices[0].delta.content for chunk in response if chunk.choices[0].delta.content is not None)
st.session_state.reasoning_msg.append({"role": "assistant", "content": result})
except Exception as e:
st.error(f"Error occured: {e}")
st.session_state.reasoning_cache = st.session_state.reasoning_msg
st.session_state.reasoning_retry = False
st.rerun()
if clear_btn:
st.session_state.reasoning_tokens = 8192
st.session_state.reasoning_temp = 0.50
st.session_state.reasoning_topp = 0.70
st.session_state.reasoning_freq = 0.00
st.session_state.reasoning_pres = 0.00
st.session_state.reasoning_msg = []
st.session_state.reasoning_cache = []
st.session_state.reasoning_stop = None
st.rerun()
if undo_btn:
del st.session_state.reasoning_msg[-1]
del st.session_state.reasoning_cache[-1]
st.rerun()
|