import gradio as gr from transformers import pipeline title = "Silly Ted-Talk snippet generator" description = "Tap on the \"Submit\" button to generate a random text snippet." article = "

Fine tuned EleutherAI/gpt-neo-125M upon a formatted TED – Ultimate Dataset (English)

" model_id = "./model" text_generator = pipeline('text-generation', model=model_id, tokenizer=model_id) max_length = 128 top_k = 40 top_p = 0.92 temperature = 1.0 def text_generation(input_text = None): if input_text == None or len(input_text) == 0: input_text = "\t\"" else: input_text.replace("\"", "") if input_text.startswith("<|startoftext|>") == False: input_text ="\t\"" + input_text generated_text = text_generator(input_text, max_length=max_length, top_k=top_k, top_p=top_p, temperature=temperature, do_sample=True, repetition_penalty=2.0, num_return_sequences=1) parsed_text = generated_text[0]["generated_text"].replace("<|startoftext|>", "").replace("\r","").replace("\n\n", "\n").replace("\t", " ").replace("<|pad|>", " * ").replace("\"\"", "\"") return parsed_text gr.Interface( text_generation, [gr.inputs.Textbox(lines=1, label="Enter input text or leave blank")], outputs=[gr.outputs.Textbox(type="auto", label="Generated Ted-Talk snippet")], title=title, description=description, article=article, theme="default", allow_flagging=False, ).launch()