Spaces:
Paused
Paused
# Open Source Model Licensed under the Apache License Version 2.0 | |
# and Other Licenses of the Third-Party Components therein: | |
# The below Model in this distribution may have been modified by THL A29 Limited | |
# ("Tencent Modifications"). All Tencent Modifications are Copyright (C) 2024 THL A29 Limited. | |
# Copyright (C) 2024 THL A29 Limited, a Tencent company. All rights reserved. | |
# The below software and/or models in this distribution may have been | |
# modified by THL A29 Limited ("Tencent Modifications"). | |
# All Tencent Modifications are Copyright (C) THL A29 Limited. | |
# Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT | |
# except for the third-party components listed below. | |
# Hunyuan 3D does not impose any additional limitations beyond what is outlined | |
# in the repsective licenses of these third-party components. | |
# Users must comply with all terms and conditions of original licenses of these third-party | |
# components and must ensure that the usage of the third party components adheres to | |
# all relevant laws and regulations. | |
# For avoidance of doubts, Hunyuan 3D means the large language models and | |
# their software and algorithms, including trained model weights, parameters (including | |
# optimizer states), machine-learning model code, inference-enabling code, training-enabling code, | |
# fine-tuning enabling code and other elements of the foregoing made publicly available | |
# by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT. | |
import math | |
import numpy as np | |
import torch | |
def transform_pos(mtx, pos, keepdim=False): | |
t_mtx = torch.from_numpy(mtx).to( | |
pos.device) if isinstance( | |
mtx, np.ndarray) else mtx | |
if pos.shape[-1] == 3: | |
posw = torch.cat( | |
[pos, torch.ones([pos.shape[0], 1]).to(pos.device)], axis=1) | |
else: | |
posw = pos | |
if keepdim: | |
return torch.matmul(posw, t_mtx.t())[...] | |
else: | |
return torch.matmul(posw, t_mtx.t())[None, ...] | |
def get_mv_matrix(elev, azim, camera_distance, center=None): | |
elev = -elev | |
azim += 90 | |
elev_rad = math.radians(elev) | |
azim_rad = math.radians(azim) | |
camera_position = np.array([camera_distance * math.cos(elev_rad) * math.cos(azim_rad), | |
camera_distance * | |
math.cos(elev_rad) * math.sin(azim_rad), | |
camera_distance * math.sin(elev_rad)]) | |
if center is None: | |
center = np.array([0, 0, 0]) | |
else: | |
center = np.array(center) | |
lookat = center - camera_position | |
lookat = lookat / np.linalg.norm(lookat) | |
up = np.array([0, 0, 1.0]) | |
right = np.cross(lookat, up) | |
right = right / np.linalg.norm(right) | |
up = np.cross(right, lookat) | |
up = up / np.linalg.norm(up) | |
c2w = np.concatenate( | |
[np.stack([right, up, -lookat], axis=-1), camera_position[:, None]], axis=-1) | |
w2c = np.zeros((4, 4)) | |
w2c[:3, :3] = np.transpose(c2w[:3, :3], (1, 0)) | |
w2c[:3, 3:] = -np.matmul(np.transpose(c2w[:3, :3], (1, 0)), c2w[:3, 3:]) | |
w2c[3, 3] = 1.0 | |
return w2c.astype(np.float32) | |
def get_orthographic_projection_matrix( | |
left=-1, right=1, bottom=-1, top=1, near=0, far=2): | |
""" | |
计算正交投影矩阵。 | |
参数: | |
left (float): 投影区域左侧边界。 | |
right (float): 投影区域右侧边界。 | |
bottom (float): 投影区域底部边界。 | |
top (float): 投影区域顶部边界。 | |
near (float): 投影区域近裁剪面距离。 | |
far (float): 投影区域远裁剪面距离。 | |
返回: | |
numpy.ndarray: 正交投影矩阵。 | |
""" | |
ortho_matrix = np.eye(4, dtype=np.float32) | |
ortho_matrix[0, 0] = 2 / (right - left) | |
ortho_matrix[1, 1] = 2 / (top - bottom) | |
ortho_matrix[2, 2] = -2 / (far - near) | |
ortho_matrix[0, 3] = -(right + left) / (right - left) | |
ortho_matrix[1, 3] = -(top + bottom) / (top - bottom) | |
ortho_matrix[2, 3] = -(far + near) / (far - near) | |
return ortho_matrix | |
def get_perspective_projection_matrix(fovy, aspect_wh, near, far): | |
fovy_rad = math.radians(fovy) | |
return np.array([[1.0 / (math.tan(fovy_rad / 2.0) * aspect_wh), 0, 0, 0], | |
[0, 1.0 / math.tan(fovy_rad / 2.0), 0, 0], | |
[0, 0, -(far + near) / (far - near), - | |
2.0 * far * near / (far - near)], | |
[0, 0, -1, 0]]).astype(np.float32) | |