Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -6,62 +6,57 @@ import datetime
|
|
6 |
import sys
|
7 |
|
8 |
def run_command(command):
|
9 |
-
"""Run a shell command and
|
10 |
-
print(f"Running command: {
|
11 |
try:
|
12 |
-
subprocess.
|
|
|
13 |
except subprocess.CalledProcessError as e:
|
14 |
-
|
15 |
-
sys.exit(1)
|
16 |
|
17 |
def check_for_mp4_in_outputs(given_folder):
|
18 |
-
# Define the path to the outputs folder
|
19 |
outputs_folder = given_folder
|
20 |
-
|
21 |
-
# Check if the outputs folder exists
|
22 |
if not os.path.exists(outputs_folder):
|
23 |
return None
|
24 |
-
|
25 |
-
# Check if there is a .mp4 file in the outputs folder
|
26 |
mp4_files = [f for f in os.listdir(outputs_folder) if f.endswith('.mp4')]
|
27 |
-
|
28 |
-
# Return the path to the mp4 file if it exists
|
29 |
-
if mp4_files:
|
30 |
-
return os.path.join(outputs_folder, mp4_files[0])
|
31 |
-
else:
|
32 |
-
return None
|
33 |
-
|
34 |
|
35 |
def infer(input_video, cropped_and_aligned):
|
|
|
|
|
36 |
|
37 |
-
|
|
|
|
|
38 |
|
39 |
-
|
40 |
-
|
41 |
-
|
|
|
42 |
|
43 |
-
|
|
|
|
|
44 |
|
45 |
-
|
46 |
-
# Example: Run the inference script (replace with your actual command)
|
47 |
-
run_command(f"{sys.executable} inference_keep.py -i={filepath} -o={output_folder_name} --has_aligned --save_video -s=1")
|
48 |
-
else:
|
49 |
-
run_command(f"{sys.executable} inference_keep.py -i={filepath} -o={output_folder_name} --draw_box --save_video -s=1 --bg_upsampler=realesrgan")
|
50 |
-
|
51 |
-
torch.cuda.empty_cache()
|
52 |
-
|
53 |
-
# Call the function and print the result
|
54 |
-
this_infer_folder = os.path.splitext(os.path.basename(filepath))[0]
|
55 |
-
joined_path = os.path.join(output_folder_name, this_infer_folder)
|
56 |
-
mp4_file_path = check_for_mp4_in_outputs(joined_path)
|
57 |
-
print(mp4_file_path)
|
58 |
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
|
|
|
|
|
|
|
|
|
|
|
63 |
|
|
|
|
|
|
|
|
|
64 |
result_video = gr.Video()
|
|
|
|
|
65 |
with gr.Blocks() as demo:
|
66 |
with gr.Column():
|
67 |
gr.Markdown("# KEEP")
|
@@ -94,19 +89,19 @@ with gr.Blocks() as demo:
|
|
94 |
],
|
95 |
fn = infer,
|
96 |
inputs = [input_video, is_cropped_and_aligned],
|
97 |
-
outputs = [result_video],
|
98 |
run_on_click = False,
|
99 |
cache_examples = "lazy"
|
100 |
)
|
101 |
|
102 |
with gr.Column():
|
103 |
result_video.render()
|
104 |
-
|
105 |
|
106 |
submit_btn.click(
|
107 |
fn = infer,
|
108 |
inputs = [input_video, is_cropped_and_aligned],
|
109 |
-
outputs = [result_video],
|
110 |
show_api=False
|
111 |
)
|
112 |
|
|
|
6 |
import sys
|
7 |
|
8 |
def run_command(command):
|
9 |
+
"""Run a shell command and return its output and error status."""
|
10 |
+
print(f"Running command: {command}")
|
11 |
try:
|
12 |
+
result = subprocess.run(command, shell=True, check=True, capture_output=True, text=True)
|
13 |
+
return True, result.stdout
|
14 |
except subprocess.CalledProcessError as e:
|
15 |
+
return False, f"Error running command: {e}\nOutput: {e.output}\nError: {e.stderr}"
|
|
|
16 |
|
17 |
def check_for_mp4_in_outputs(given_folder):
|
|
|
18 |
outputs_folder = given_folder
|
|
|
|
|
19 |
if not os.path.exists(outputs_folder):
|
20 |
return None
|
|
|
|
|
21 |
mp4_files = [f for f in os.listdir(outputs_folder) if f.endswith('.mp4')]
|
22 |
+
return os.path.join(outputs_folder, mp4_files[0]) if mp4_files else None
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
def infer(input_video, cropped_and_aligned):
|
25 |
+
try:
|
26 |
+
torch.cuda.empty_cache()
|
27 |
|
28 |
+
filepath = input_video
|
29 |
+
timestamp = datetime.datetime.now().strftime("%Y%m%d%H%M%S")
|
30 |
+
output_folder_name = f"results_{timestamp}"
|
31 |
|
32 |
+
if cropped_and_aligned:
|
33 |
+
command = f"{sys.executable} inference_keep.py -i={filepath} -o={output_folder_name} --has_aligned --save_video -s=1"
|
34 |
+
else:
|
35 |
+
command = f"{sys.executable} inference_keep.py -i={filepath} -o={output_folder_name} --draw_box --save_video -s=1 --bg_upsampler=realesrgan"
|
36 |
|
37 |
+
success, output = run_command(command)
|
38 |
+
if not success:
|
39 |
+
return None, output # Return None for the video and the error message
|
40 |
|
41 |
+
torch.cuda.empty_cache()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
+
this_infer_folder = os.path.splitext(os.path.basename(filepath))[0]
|
44 |
+
joined_path = os.path.join(output_folder_name, this_infer_folder)
|
45 |
+
mp4_file_path = check_for_mp4_in_outputs(joined_path)
|
46 |
|
47 |
+
if mp4_file_path:
|
48 |
+
print(f"RESULT: {mp4_file_path}")
|
49 |
+
return mp4_file_path, "Processing completed successfully."
|
50 |
+
else:
|
51 |
+
return None, "Processing completed, but no output video was found."
|
52 |
|
53 |
+
except Exception as e:
|
54 |
+
return None, f"An unexpected error occurred: {str(e)}"
|
55 |
+
|
56 |
+
# Gradio interface setup
|
57 |
result_video = gr.Video()
|
58 |
+
error_output = gr.Textbox(label="Status/Error")
|
59 |
+
|
60 |
with gr.Blocks() as demo:
|
61 |
with gr.Column():
|
62 |
gr.Markdown("# KEEP")
|
|
|
89 |
],
|
90 |
fn = infer,
|
91 |
inputs = [input_video, is_cropped_and_aligned],
|
92 |
+
outputs = [result_video, error_output],
|
93 |
run_on_click = False,
|
94 |
cache_examples = "lazy"
|
95 |
)
|
96 |
|
97 |
with gr.Column():
|
98 |
result_video.render()
|
99 |
+
error_output.render()
|
100 |
|
101 |
submit_btn.click(
|
102 |
fn = infer,
|
103 |
inputs = [input_video, is_cropped_and_aligned],
|
104 |
+
outputs = [result_video, error_output],
|
105 |
show_api=False
|
106 |
)
|
107 |
|