# Copyright (c) 2024 Bytedance Ltd. and/or its affiliates # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from torch import nn from einops import rearrange from torch.nn import functional as F from ..utils.util import cosine_loss import torch.nn as nn import torch.nn.functional as F from diffusers.models.attention import CrossAttention, FeedForward from diffusers.utils.import_utils import is_xformers_available from einops import rearrange class SyncNet(nn.Module): def __init__(self, config): super().__init__() self.audio_encoder = DownEncoder2D( in_channels=config["audio_encoder"]["in_channels"], block_out_channels=config["audio_encoder"]["block_out_channels"], downsample_factors=config["audio_encoder"]["downsample_factors"], dropout=config["audio_encoder"]["dropout"], attn_blocks=config["audio_encoder"]["attn_blocks"], ) self.visual_encoder = DownEncoder2D( in_channels=config["visual_encoder"]["in_channels"], block_out_channels=config["visual_encoder"]["block_out_channels"], downsample_factors=config["visual_encoder"]["downsample_factors"], dropout=config["visual_encoder"]["dropout"], attn_blocks=config["visual_encoder"]["attn_blocks"], ) self.eval() def forward(self, image_sequences, audio_sequences): vision_embeds = self.visual_encoder(image_sequences) # (b, c, 1, 1) audio_embeds = self.audio_encoder(audio_sequences) # (b, c, 1, 1) vision_embeds = vision_embeds.reshape(vision_embeds.shape[0], -1) # (b, c) audio_embeds = audio_embeds.reshape(audio_embeds.shape[0], -1) # (b, c) # Make them unit vectors vision_embeds = F.normalize(vision_embeds, p=2, dim=1) audio_embeds = F.normalize(audio_embeds, p=2, dim=1) return vision_embeds, audio_embeds class ResnetBlock2D(nn.Module): def __init__( self, in_channels: int, out_channels: int, dropout: float = 0.0, norm_num_groups: int = 32, eps: float = 1e-6, act_fn: str = "silu", downsample_factor=2, ): super().__init__() self.norm1 = nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=eps, affine=True) self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1) self.norm2 = nn.GroupNorm(num_groups=norm_num_groups, num_channels=out_channels, eps=eps, affine=True) self.dropout = nn.Dropout(dropout) self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1) if act_fn == "relu": self.act_fn = nn.ReLU() elif act_fn == "silu": self.act_fn = nn.SiLU() if in_channels != out_channels: self.conv_shortcut = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0) else: self.conv_shortcut = None if isinstance(downsample_factor, list): downsample_factor = tuple(downsample_factor) if downsample_factor == 1: self.downsample_conv = None else: self.downsample_conv = nn.Conv2d( out_channels, out_channels, kernel_size=3, stride=downsample_factor, padding=0 ) self.pad = (0, 1, 0, 1) if isinstance(downsample_factor, tuple): if downsample_factor[0] == 1: self.pad = (0, 1, 1, 1) # The padding order is from back to front elif downsample_factor[1] == 1: self.pad = (1, 1, 0, 1) def forward(self, input_tensor): hidden_states = input_tensor hidden_states = self.norm1(hidden_states) hidden_states = self.act_fn(hidden_states) hidden_states = self.conv1(hidden_states) hidden_states = self.norm2(hidden_states) hidden_states = self.act_fn(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.conv2(hidden_states) if self.conv_shortcut is not None: input_tensor = self.conv_shortcut(input_tensor) hidden_states += input_tensor if self.downsample_conv is not None: hidden_states = F.pad(hidden_states, self.pad, mode="constant", value=0) hidden_states = self.downsample_conv(hidden_states) return hidden_states class AttentionBlock2D(nn.Module): def __init__(self, query_dim, norm_num_groups=32, dropout=0.0): super().__init__() if not is_xformers_available(): raise ModuleNotFoundError( "You have to install xformers to enable memory efficient attetion", name="xformers" ) # inner_dim = dim_head * heads self.norm1 = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=query_dim, eps=1e-6, affine=True) self.norm2 = nn.LayerNorm(query_dim) self.norm3 = nn.LayerNorm(query_dim) self.ff = FeedForward(query_dim, dropout=dropout, activation_fn="geglu") self.conv_in = nn.Conv2d(query_dim, query_dim, kernel_size=1, stride=1, padding=0) self.conv_out = nn.Conv2d(query_dim, query_dim, kernel_size=1, stride=1, padding=0) self.attn = CrossAttention(query_dim=query_dim, heads=8, dim_head=query_dim // 8, dropout=dropout, bias=True) self.attn._use_memory_efficient_attention_xformers = True def forward(self, hidden_states): assert hidden_states.dim() == 4, f"Expected hidden_states to have ndim=4, but got ndim={hidden_states.dim()}." batch, channel, height, width = hidden_states.shape residual = hidden_states hidden_states = self.norm1(hidden_states) hidden_states = self.conv_in(hidden_states) hidden_states = rearrange(hidden_states, "b c h w -> b (h w) c") norm_hidden_states = self.norm2(hidden_states) hidden_states = self.attn(norm_hidden_states, attention_mask=None) + hidden_states hidden_states = self.ff(self.norm3(hidden_states)) + hidden_states hidden_states = rearrange(hidden_states, "b (h w) c -> b c h w", h=height, w=width) hidden_states = self.conv_out(hidden_states) hidden_states = hidden_states + residual return hidden_states class DownEncoder2D(nn.Module): def __init__( self, in_channels=4 * 16, block_out_channels=[64, 128, 256, 256], downsample_factors=[2, 2, 2, 2], layers_per_block=2, norm_num_groups=32, attn_blocks=[1, 1, 1, 1], dropout: float = 0.0, act_fn="silu", ): super().__init__() self.layers_per_block = layers_per_block # in self.conv_in = nn.Conv2d(in_channels, block_out_channels[0], kernel_size=3, stride=1, padding=1) # down self.down_blocks = nn.ModuleList([]) output_channels = block_out_channels[0] for i, block_out_channel in enumerate(block_out_channels): input_channels = output_channels output_channels = block_out_channel # is_final_block = i == len(block_out_channels) - 1 down_block = ResnetBlock2D( in_channels=input_channels, out_channels=output_channels, downsample_factor=downsample_factors[i], norm_num_groups=norm_num_groups, dropout=dropout, act_fn=act_fn, ) self.down_blocks.append(down_block) if attn_blocks[i] == 1: attention_block = AttentionBlock2D(query_dim=output_channels, dropout=dropout) self.down_blocks.append(attention_block) # out self.norm_out = nn.GroupNorm(num_channels=block_out_channels[-1], num_groups=norm_num_groups, eps=1e-6) self.act_fn_out = nn.ReLU() def forward(self, hidden_states): hidden_states = self.conv_in(hidden_states) # down for down_block in self.down_blocks: hidden_states = down_block(hidden_states) # post-process hidden_states = self.norm_out(hidden_states) hidden_states = self.act_fn_out(hidden_states) return hidden_states