File size: 2,230 Bytes
80fd191
 
 
 
 
 
 
 
665e653
80fd191
665e653
 
 
80fd191
cc6c61e
 
 
 
 
 
 
80fd191
665e653
 
 
 
 
80fd191
 
665e653
80fd191
665e653
c57634b
665e653
 
 
 
 
 
80fd191
665e653
80fd191
665e653
 
80fd191
665e653
 
 
 
 
 
 
 
 
 
 
 
80fd191
 
 
 
 
 
 
 
 
 
 
9f2c373
51557c9
4d6ff3b
80fd191
 
 
 
 
 
 
ac21862
80fd191
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import numpy as np
import torch
import torch.nn.functional as F
import gradio as gr
from ormbg import ORMBG
from PIL import Image


model_path = "ormbg.pth"

net = ORMBG()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
net.to(device)

if torch.cuda.is_available():
    net.load_state_dict(torch.load(model_path))
    net = net.cuda()
else:
    net.load_state_dict(torch.load(model_path, map_location="cpu"))
net.eval()


def resize_image(image):
    image = image.convert("RGB")
    model_input_size = (1024, 1024)
    image = image.resize(model_input_size, Image.BILINEAR)
    return image


def inference(image):

    # prepare input
    orig_image = Image.fromarray(image)
    w, h = orig_image.size
    image = resize_image(orig_image)
    im_np = np.array(image)
    im_tensor = torch.tensor(im_np, dtype=torch.float32).permute(2, 0, 1)
    im_tensor = torch.unsqueeze(im_tensor, 0)
    im_tensor = torch.divide(im_tensor, 255.0)
    if torch.cuda.is_available():
        im_tensor = im_tensor.cuda()

    # inference
    result = net(im_tensor)
    # post process
    result = torch.squeeze(F.interpolate(result[0][0], size=(h, w), mode="bilinear"), 0)
    ma = torch.max(result)
    mi = torch.min(result)
    result = (result - mi) / (ma - mi)
    # image to pil
    im_array = (result * 255).cpu().data.numpy().astype(np.uint8)
    pil_im = Image.fromarray(np.squeeze(im_array))
    # paste the mask on the original image
    new_im = Image.new("RGBA", pil_im.size, (0, 0, 0, 0))
    new_im.paste(orig_image, mask=pil_im)

    return new_im


gr.Markdown("## Open Remove Background Model (ormbg)")
gr.HTML(
    """
  <p style="margin-bottom: 10px; font-size: 94%">
    This is a demo for Open Remove Background Model (ormbg) that using
    <a href="https://huggingface.co/schirrmacher/ormbg" target="_blank">Open Remove Background Model (ormbg) model</a> as backbone.
  </p>
"""
)
title = "Transparent Background (Fast)"

examples = ["./example1.png", "./example2.png", "./example3.png"]

demo = gr.Interface(
    fn=inference,
    inputs="image",
    outputs="image",
    examples=examples,
    title=title,
    theme="Nymbo/Nymbo_Theme"
)

if __name__ == "__main__":
    demo.launch(share=False)