Spaces:
Running
Running
import os | |
import time | |
#import spaces | |
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer | |
import gradio as gr | |
from threading import Thread | |
MODEL_LIST = ["HuggingFaceTB/SmolLM-1.7B-Instruct", "HuggingFaceTB/SmolLM-135M-Instruct", "HuggingFaceTB/SmolLM-360M-Instruct"] | |
HF_TOKEN = os.environ.get("HF_TOKEN", None) | |
TITLE = "<h1><center>SmolLM-Instruct</center></h1>" | |
PLACEHOLDER = """ | |
<center> | |
<p>SmolLM is a series of state-of-the-art small language models available in three sizes: 135M, 360M, and 1.7B parameters.</p> | |
</center> | |
""" | |
# pip install transformers | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
device = "cpu" # for GPU usage or "cpu" for CPU usage | |
tokenizer0 = AutoTokenizer.from_pretrained(MODEL_LIST[0]) | |
model0 = AutoModelForCausalLM.from_pretrained(MODEL_LIST[0]).to(device) | |
tokenizer1 = AutoTokenizer.from_pretrained(MODEL_LIST[1]) | |
model1 = AutoModelForCausalLM.from_pretrained(MODEL_LIST[1]).to(device) | |
tokenizer2 = AutoTokenizer.from_pretrained(MODEL_LIST[2]) | |
model2 = AutoModelForCausalLM.from_pretrained(MODEL_LIST[2]).to(device) | |
#@spaces.GPU() | |
def stream_chat( | |
message: str, | |
history: list, | |
temperature: float = 0.8, | |
max_new_tokens: int = 1024, | |
top_p: float = 1.0, | |
top_k: int = 20, | |
penalty: float = 1.2, | |
choice: str = "135M" | |
): | |
print(f'message: {message}') | |
print(f'history: {history}') | |
conversation = [] | |
for prompt, answer in history: | |
conversation.extend([ | |
{"role": "user", "content": prompt}, | |
{"role": "assistant", "content": answer}, | |
]) | |
conversation.append({"role": "user", "content": message}) | |
if choice == "1.7B": | |
tokenizer = tokenizer0 | |
model = model0 | |
elif choice == "135M": | |
model = model1 | |
tokenizer = tokenizer1 | |
else: | |
model = model2 | |
tokenizer = tokenizer2 | |
input_text=tokenizer.apply_chat_template(conversation, add_generation_prompt=True, tokenize=False) | |
inputs = tokenizer.encode(input_text, return_tensors="pt").to(device) | |
streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True) | |
generate_kwargs = dict( | |
input_ids=inputs, | |
max_new_tokens = max_new_tokens, | |
do_sample = False if temperature == 0 else True, | |
top_p = top_p, | |
top_k = top_k, | |
temperature = temperature, | |
streamer=streamer, | |
) | |
with torch.no_grad(): | |
thread = Thread(target=model.generate, kwargs=generate_kwargs) | |
thread.start() | |
buffer = "" | |
for new_text in streamer: | |
buffer += new_text | |
yield buffer | |
#print(tokenizer.decode(outputs[0])) | |
chatbot = gr.Chatbot(height=600, placeholder=PLACEHOLDER) | |
with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo: | |
gr.HTML(TITLE) | |
gr.ChatInterface( | |
fn=stream_chat, | |
chatbot=chatbot, | |
fill_height=True, | |
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False), | |
additional_inputs=[ | |
gr.Slider( | |
minimum=0, | |
maximum=1, | |
step=0.1, | |
value=0.8, | |
label="Temperature", | |
render=False, | |
), | |
gr.Slider( | |
minimum=128, | |
maximum=8192, | |
step=1, | |
value=1024, | |
label="Max new tokens", | |
render=False, | |
), | |
gr.Slider( | |
minimum=0.0, | |
maximum=1.0, | |
step=0.1, | |
value=1.0, | |
label="top_p", | |
render=False, | |
), | |
gr.Slider( | |
minimum=1, | |
maximum=20, | |
step=1, | |
value=20, | |
label="top_k", | |
render=False, | |
), | |
gr.Slider( | |
minimum=0.0, | |
maximum=2.0, | |
step=0.1, | |
value=1.2, | |
label="Repetition penalty", | |
render=False, | |
), | |
gr.Radio( | |
["135M", "360M", "1.7B"], | |
value="135M", | |
label="Load Model", | |
render=False, | |
), | |
], | |
examples=[ | |
["Help me study vocabulary: write a sentence for me to fill in the blank, and I'll try to pick the correct option."], | |
["What are 5 creative things I could do with my kids' art? I don't want to throw them away, but it's also so much clutter."], | |
["Tell me a random fun fact about the Roman Empire."], | |
["Show me a code snippet of a website's sticky header in CSS and JavaScript."], | |
], | |
cache_examples=False, | |
) | |
if __name__ == "__main__": | |
demo.launch() | |