Spaces:
Sleeping
Sleeping
File size: 10,526 Bytes
b4c506d 4fbb557 b4c506d 4fbb557 b4c506d 4fbb557 b4c506d 4fbb557 b4c506d 4fbb557 b4c506d 4fbb557 b4c506d 4fbb557 c83a2e3 4fbb557 b4c506d 4fbb557 b4c506d 4fbb557 b4c506d 4fbb557 b4c506d 4fbb557 b4c506d 4fbb557 b4c506d 4fbb557 b4c506d 4fbb557 b4c506d 4fbb557 b4c506d 4fbb557 b4c506d 4fbb557 b4c506d 4fbb557 b4c506d 4fbb557 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 |
import json
import time
from itertools import count, islice
from multiprocessing.pool import ThreadPool
from queue import Queue, Empty
from typing import Any, Callable, Iterable, Iterator, TypeVar
import gradio as gr
import ijson
import pandas as pd
import requests
from datasets import Features, Value, Sequence
from gradio_huggingfacehub_search import HuggingfaceHubSearch
from huggingface_hub import InferenceClient
from utils import StringIteratorIO
model_id = "meta-llama/Meta-Llama-3.1-8B-Instruct"
client = InferenceClient(model_id)
session = requests.Session()
empty_dataframe = pd.DataFrame({"1": [], "2": [], "3": []})
NUM_ROWS_PREVIEW = 3
REWRITE_DATASET = (
"A Machine Learning practitioner is looking for a dataset similar to '{dataset}' but slightly different. "
"They want you to rewrite the dataset and apply this transformation: {prompt}."
"The first rows of the dataset are below in JSON format (one JSON object per line):\n\n{rows}\n\n"
"Rewrite those rows from the '{dataset}' dataset using the same format (one JSON object per line). "
"Try to keep some of the text or meaning intact, and apply the requested transformation '{prompt}'."
)
with gr.Blocks() as demo:
gr.Markdown(
"# 🤗 WIP Dataset ReWriter ✍️✨\n\n"
"Adjust, translate or transform completely existing datasets.\n\n"
)
with gr.Row():
with gr.Column(scale=3):
dataset_search = HuggingfaceHubSearch(
label="Hub Dataset ID",
placeholder="Search for dataset id on Huggingface",
search_type="dataset",
)
subset_dropdown = gr.Dropdown(info="Subset", show_label=False, visible=False)
split_dropdown = gr.Dropdown(info="Split", show_label=False, visible=False)
gr.Markdown("### Input")
input_preview = gr.DataFrame(visible=False)
pretty_input_preview = gr.DataFrame(interactive=False, wrap=True)
gr.Markdown("### ReWrite")
input_prompt = gr.Textbox(label="Enter the adjustment or transformation to apply to the dataset:")
with gr.Accordion("Modify Format", open=False):
output_format = gr.Textbox(interactive=True, show_label=False, container=False)
rewrite_button = gr.Button("ReWrite Dataset", variant="primary")
output_preview = gr.DataFrame(interactive=False, wrap=True)
save_button = gr.Button("ReWrite Full Dataset", interactive=False)
############
#
# Utils
#
###########
def stream_rows(dataset: str, subset: str, split: str, batch_size: int = 100) -> Iterable[dict[str, Any]]:
for i in count():
rows_resp = session.get(f"https://datasets-server.huggingface.co/rows?dataset={dataset}&config={subset}&split={split}&offset={i * batch_size}&length={batch_size}", timeout=10).json()
if "error" in rows_resp:
raise RuntimeError(rows_resp["error"])
if not rows_resp["rows"]:
break
for row_item in rows_resp["rows"]:
yield row_item["row"]
T = TypeVar("T")
def batched(it: Iterable[T], n: int) -> Iterator[list[T]]:
it = iter(it)
while batch := list(islice(it, n)):
yield batch
def stream_reponse(messages: list[dict[str: str]], response_format=None) -> Iterator[str]:
for _ in range(3):
message = None
try:
for message in client.chat_completion(
messages=messages,
max_tokens=5000,
stream=True,
top_p=0.8,
seed=42,
response_format=response_format
):
yield message.choices[0].delta.content
except requests.exceptions.ConnectionError as e:
if message:
raise
print(e + "\n\nRetrying in 1sec")
time.sleep(1)
continue
break
def stream_rewrite_dataset_row_by_row(dataset: str, rows: list[dict[str, str]], prompt: str, format: str) -> Iterator[dict[str, str]]:
prompt = prompt[:1000] if prompt.strip() else ""
messages = [{"role": "user", "content": REWRITE_DATASET.format(
dataset=dataset,
rows=json.dumps({"data": rows}),
prompt=prompt,
)}]
response_format = {"type": "json", "value": {"properties": {"data": {"type": "array", "maxItems": len(rows), "minItems": len(rows), "items": format}}, "required": ["data"]}}
print("go")
yield from islice(ijson.items(StringIteratorIO(stream_reponse(messages, response_format=response_format)), "data.item", buf_size=4), len(rows))
print("done")
def _write_generator_to_queue(queue: Queue, func: Callable[..., Iterable], kwargs: dict) -> None:
for i, result in enumerate(func(**kwargs)):
queue.put(result)
return None
def iflatmap_unordered(
func: Callable[..., Iterable[T]],
*,
kwargs_iterable: Iterable[dict],
) -> Iterable[T]:
queue = Queue()
with ThreadPool() as pool:
async_results = [pool.apply_async(_write_generator_to_queue, (queue, func, kwargs)) for kwargs in kwargs_iterable]
try:
while True:
try:
yield queue.get(timeout=0.05)
except Empty:
if all(async_result.ready() for async_result in async_results) and queue.empty():
break
finally: # in case there's an error to raise
[async_result.get(timeout=0.05) for async_result in async_results]
def features_to_format(features: Features) -> dict:
def feature_to_format(feature):
if isinstance(feature, Value):
if "int" in feature.dtype:
return {"type": "integer"}
elif "float" in feature.dtype:
return {"type": "number"}
else:
return {"type": "string"}
elif isinstance(feature, list):
return {"type": "array", "items": feature_to_format(feature[0])}
elif isinstance(feature, dict):
return {"properties": {k: feature_to_format(v) for k, v in feature.items()}, "required": list(feature)}
elif isinstance(feature, Sequence):
if isinstance(feature.feature, dict):
return {"properties": {k: {"type": "array", "items": v } for k, v in feature_to_format(feature.feature).items()}, "required": list(feature)}
else:
return {"type": "array", "items": feature_to_format(feature.feature)}
else:
return {"type": "string"}
return feature_to_format(features)
############
#
# Events
#
###########
def _resolve_dataset_selection(dataset: str, default_subset: str, default_split: str) -> dict:
if "/" not in dataset.strip().strip("/"):
return None, None, {
subset_dropdown: gr.Dropdown(visible=False),
split_dropdown: gr.Dropdown(visible=False),
}
info_resp = session.get(f"https://datasets-server.huggingface.co/info?dataset={dataset}", timeout=3).json()
if "error" in info_resp:
return None, None, {
subset_dropdown: gr.Dropdown(visible=False),
split_dropdown: gr.Dropdown(visible=False),
}
subsets: list[str] = list(info_resp["dataset_info"])
subset = default_subset if default_subset in subsets else subsets[0]
splits: list[str] = info_resp["dataset_info"][subset]["splits"]
split = default_split if default_split in splits else splits[0]
json_format = json.dumps(features_to_format(Features.from_dict(info_resp["dataset_info"][subset]["features"])), indent=2)
return subset, split, {
subset_dropdown: gr.Dropdown(value=subset, choices=subsets, visible=len(subsets) > 1),
split_dropdown: gr.Dropdown(value=split, choices=splits, visible=len(splits) > 1),
output_format: gr.Textbox(json_format, lines=json_format.count("\n") + 1)
}
def _show_input_preview(dataset: str, default_subset: str, default_split: str) -> dict:
subset, split, output = _resolve_dataset_selection(dataset, default_subset=default_subset, default_split=default_split)
if subset is None or split is None:
return output
rows = list(islice((stream_rows(dataset, subset, split, batch_size=NUM_ROWS_PREVIEW)), NUM_ROWS_PREVIEW))
return {
input_preview: pd.DataFrame(rows),
pretty_input_preview: pd.DataFrame([{k: str(v) for k, v in row.items()} for row in rows]),
**output
}
@dataset_search.change(inputs=[dataset_search], outputs=[input_preview, pretty_input_preview, subset_dropdown, split_dropdown, output_format])
def show_input_from_dataset_search(dataset: str) -> dict:
return _show_input_preview(dataset, default_subset="default", default_split="train")
@subset_dropdown.change(inputs=[dataset_search, subset_dropdown], outputs=[input_preview, pretty_input_preview, subset_dropdown, split_dropdown, output_format])
def show_input_from_subset_dropdown(dataset: str, subset: str) -> dict:
return _show_input_preview(dataset, default_subset=subset, default_split="train")
@split_dropdown.change(inputs=[dataset_search, subset_dropdown, split_dropdown], outputs=[input_preview, pretty_input_preview, subset_dropdown, split_dropdown, output_format])
def show_input_from_split_dropdown(dataset: str, subset: str, split: str) -> dict:
return _show_input_preview(dataset, default_subset=subset, default_split=split)
@rewrite_button.click(inputs=[dataset_search, subset_dropdown, split_dropdown, input_preview, input_prompt, output_format], outputs=[output_preview])
def rewrite(dataset: str, subset: str, split: str, input_preview_df: pd.DataFrame, prompt: str, json_format: str) -> Iterator[pd.DataFrame]:
rows = input_preview_df.to_dict(orient="records")
output_rows = []
for row in stream_rewrite_dataset_row_by_row(dataset=dataset, rows=rows, prompt=prompt, format=json.loads(json_format)):
output_rows.append(row)
yield pd.DataFrame(output_rows)
demo.launch()
|