import json import time from itertools import count, islice from multiprocessing.pool import ThreadPool from queue import Queue, Empty from typing import Any, Callable, Iterable, Iterator, TypeVar import gradio as gr import ijson import pandas as pd import requests from datasets import Features, Value, Sequence from gradio_huggingfacehub_search import HuggingfaceHubSearch from huggingface_hub import InferenceClient from utils import StringIteratorIO model_id = "meta-llama/Meta-Llama-3.1-8B-Instruct" client = InferenceClient(model_id) session = requests.Session() empty_dataframe = pd.DataFrame({"1": [], "2": [], "3": []}) NUM_ROWS_PREVIEW = 3 REWRITE_DATASET = ( "A Machine Learning practitioner is looking for a dataset similar to '{dataset}' but slightly different. " "They want you to rewrite the dataset and apply this transformation: {prompt}." "The first rows of the dataset are below in JSON format (one JSON object per line):\n\n{rows}\n\n" "Rewrite those rows from the '{dataset}' dataset using the same format (one JSON object per line). " "Try to keep some of the text or meaning intact, and apply the requested transformation '{prompt}'." ) with gr.Blocks() as demo: gr.Markdown( "# 🤗 WIP Dataset ReWriter ✍️✨\n\n" "Adjust, translate or transform completely existing datasets.\n\n" ) with gr.Row(): with gr.Column(scale=3): dataset_search = HuggingfaceHubSearch( label="Hub Dataset ID", placeholder="Search for dataset id on Huggingface", search_type="dataset", ) subset_dropdown = gr.Dropdown(info="Subset", show_label=False, visible=False) split_dropdown = gr.Dropdown(info="Split", show_label=False, visible=False) gr.Markdown("### Input") input_preview = gr.DataFrame(visible=False) pretty_input_preview = gr.DataFrame(interactive=False, wrap=True) gr.Markdown("### ReWrite") input_prompt = gr.Textbox(label="Enter the adjustment or transformation to apply to the dataset:") with gr.Accordion("Modify Format", open=False): output_format = gr.Textbox(interactive=True, show_label=False, container=False) rewrite_button = gr.Button("ReWrite Dataset", variant="primary") output_preview = gr.DataFrame(interactive=False, wrap=True) save_button = gr.Button("ReWrite Full Dataset", interactive=False) ############ # # Utils # ########### def stream_rows(dataset: str, subset: str, split: str, batch_size: int = 100) -> Iterable[dict[str, Any]]: for i in count(): rows_resp = session.get(f"https://datasets-server.huggingface.co/rows?dataset={dataset}&config={subset}&split={split}&offset={i * batch_size}&length={batch_size}", timeout=10).json() if "error" in rows_resp: raise RuntimeError(rows_resp["error"]) if not rows_resp["rows"]: break for row_item in rows_resp["rows"]: yield row_item["row"] T = TypeVar("T") def batched(it: Iterable[T], n: int) -> Iterator[list[T]]: it = iter(it) while batch := list(islice(it, n)): yield batch def stream_reponse(messages: list[dict[str: str]], response_format=None) -> Iterator[str]: for _ in range(3): message = None try: for message in client.chat_completion( messages=messages, max_tokens=5000, stream=True, top_p=0.8, seed=42, response_format=response_format ): yield message.choices[0].delta.content except requests.exceptions.ConnectionError as e: if message: raise print(e + "\n\nRetrying in 1sec") time.sleep(1) continue break def stream_rewrite_dataset_row_by_row(dataset: str, rows: list[dict[str, str]], prompt: str, format: str) -> Iterator[dict[str, str]]: prompt = prompt[:1000] if prompt.strip() else "" messages = [{"role": "user", "content": REWRITE_DATASET.format( dataset=dataset, rows=json.dumps({"data": rows}), prompt=prompt, )}] response_format = {"type": "json", "value": {"properties": {"data": {"type": "array", "maxItems": len(rows), "minItems": len(rows), "items": format}}, "required": ["data"]}} print("go") yield from islice(ijson.items(StringIteratorIO(stream_reponse(messages, response_format=response_format)), "data.item", buf_size=4), len(rows)) print("done") def _write_generator_to_queue(queue: Queue, func: Callable[..., Iterable], kwargs: dict) -> None: for i, result in enumerate(func(**kwargs)): queue.put(result) return None def iflatmap_unordered( func: Callable[..., Iterable[T]], *, kwargs_iterable: Iterable[dict], ) -> Iterable[T]: queue = Queue() with ThreadPool() as pool: async_results = [pool.apply_async(_write_generator_to_queue, (queue, func, kwargs)) for kwargs in kwargs_iterable] try: while True: try: yield queue.get(timeout=0.05) except Empty: if all(async_result.ready() for async_result in async_results) and queue.empty(): break finally: # in case there's an error to raise [async_result.get(timeout=0.05) for async_result in async_results] def features_to_format(features: Features) -> dict: def feature_to_format(feature): if isinstance(feature, Value): if "int" in feature.dtype: return {"type": "integer"} elif "float" in feature.dtype: return {"type": "number"} else: return {"type": "string"} elif isinstance(feature, list): return {"type": "array", "items": feature_to_format(feature[0])} elif isinstance(feature, dict): return {"properties": {k: feature_to_format(v) for k, v in feature.items()}, "required": list(feature)} elif isinstance(feature, Sequence): if isinstance(feature.feature, dict): return {"properties": {k: {"type": "array", "items": v } for k, v in feature_to_format(feature.feature).items()}, "required": list(feature)} else: return {"type": "array", "items": feature_to_format(feature.feature)} else: return {"type": "string"} return feature_to_format(features) ############ # # Events # ########### def _resolve_dataset_selection(dataset: str, default_subset: str, default_split: str) -> dict: if "/" not in dataset.strip().strip("/"): return None, None, { subset_dropdown: gr.Dropdown(visible=False), split_dropdown: gr.Dropdown(visible=False), } info_resp = session.get(f"https://datasets-server.huggingface.co/info?dataset={dataset}", timeout=3).json() if "error" in info_resp: return None, None, { subset_dropdown: gr.Dropdown(visible=False), split_dropdown: gr.Dropdown(visible=False), } subsets: list[str] = list(info_resp["dataset_info"]) subset = default_subset if default_subset in subsets else subsets[0] splits: list[str] = info_resp["dataset_info"][subset]["splits"] split = default_split if default_split in splits else splits[0] json_format = json.dumps(features_to_format(Features.from_dict(info_resp["dataset_info"][subset]["features"])), indent=2) return subset, split, { subset_dropdown: gr.Dropdown(value=subset, choices=subsets, visible=len(subsets) > 1), split_dropdown: gr.Dropdown(value=split, choices=splits, visible=len(splits) > 1), output_format: gr.Textbox(json_format, lines=json_format.count("\n") + 1) } def _show_input_preview(dataset: str, default_subset: str, default_split: str) -> dict: subset, split, output = _resolve_dataset_selection(dataset, default_subset=default_subset, default_split=default_split) if subset is None or split is None: return output rows = list(islice((stream_rows(dataset, subset, split, batch_size=NUM_ROWS_PREVIEW)), NUM_ROWS_PREVIEW)) return { input_preview: pd.DataFrame(rows), pretty_input_preview: pd.DataFrame([{k: str(v) for k, v in row.items()} for row in rows]), **output } @dataset_search.change(inputs=[dataset_search], outputs=[input_preview, pretty_input_preview, subset_dropdown, split_dropdown, output_format]) def show_input_from_dataset_search(dataset: str) -> dict: return _show_input_preview(dataset, default_subset="default", default_split="train") @subset_dropdown.change(inputs=[dataset_search, subset_dropdown], outputs=[input_preview, pretty_input_preview, subset_dropdown, split_dropdown, output_format]) def show_input_from_subset_dropdown(dataset: str, subset: str) -> dict: return _show_input_preview(dataset, default_subset=subset, default_split="train") @split_dropdown.change(inputs=[dataset_search, subset_dropdown, split_dropdown], outputs=[input_preview, pretty_input_preview, subset_dropdown, split_dropdown, output_format]) def show_input_from_split_dropdown(dataset: str, subset: str, split: str) -> dict: return _show_input_preview(dataset, default_subset=subset, default_split=split) @rewrite_button.click(inputs=[dataset_search, subset_dropdown, split_dropdown, input_preview, input_prompt, output_format], outputs=[output_preview]) def rewrite(dataset: str, subset: str, split: str, input_preview_df: pd.DataFrame, prompt: str, json_format: str) -> Iterator[pd.DataFrame]: rows = input_preview_df.to_dict(orient="records") output_rows = [] for row in stream_rewrite_dataset_row_by_row(dataset=dataset, rows=rows, prompt=prompt, format=json.loads(json_format)): output_rows.append(row) yield pd.DataFrame(output_rows) demo.launch()