John6666 commited on
Commit
9b104c4
·
verified ·
1 Parent(s): c913cbf

Upload 4 files

Browse files
Files changed (3) hide show
  1. README.md +1 -1
  2. app.py +19 -7
  3. requirements.txt +2 -1
README.md CHANGED
@@ -4,7 +4,7 @@ emoji: 🖥️
4
  colorFrom: yellow
5
  colorTo: pink
6
  sdk: gradio
7
- sdk_version: 5.7.0
8
  app_file: app.py
9
  pinned: false
10
  license: mit
 
4
  colorFrom: yellow
5
  colorTo: pink
6
  sdk: gradio
7
+ sdk_version: 4.44.1
8
  app_file: app.py
9
  pinned: false
10
  license: mit
app.py CHANGED
@@ -6,6 +6,7 @@ import torch
6
  from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler, AutoencoderTiny, AutoencoderKL
7
  from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5TokenizerFast
8
  from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images
 
9
 
10
  dtype = torch.bfloat16
11
  #model_id = "black-forest-labs/FLUX.1-dev"
@@ -23,14 +24,24 @@ MAX_IMAGE_SIZE = 2048
23
 
24
  pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)
25
 
26
- @spaces.GPU(duration=75)
27
  def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=3.5, num_inference_steps=28, sigmas=0.95, progress=gr.Progress(track_tqdm=True)):
28
  if randomize_seed:
29
  seed = random.randint(0, MAX_SEED)
30
  generator = torch.Generator().manual_seed(seed)
31
 
32
  #for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
33
- for img in pipe(
 
 
 
 
 
 
 
 
 
 
34
  prompt=prompt,
35
  guidance_scale=guidance_scale,
36
  num_inference_steps=num_inference_steps,
@@ -39,8 +50,8 @@ def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidan
39
  generator=generator,
40
  output_type="pil",
41
  mul_sigmas=sigmas
42
- ).images:
43
- yield img, seed
44
 
45
  examples = [
46
  "a tiny astronaut hatching from an egg on the moon",
@@ -75,7 +86,8 @@ with gr.Blocks(css=css) as demo:
75
 
76
  run_button = gr.Button("Run", scale=0)
77
 
78
- result = gr.Image(label="Result", show_label=False)
 
79
 
80
  with gr.Accordion("Advanced Settings", open=True):
81
  sigmas = gr.Slider(
@@ -97,7 +109,7 @@ with gr.Blocks(css=css) as demo:
97
  randomize_seed = gr.Checkbox(label="Randomize seed", value=False)
98
 
99
  with gr.Row():
100
-
101
  width = gr.Slider(
102
  label="Width",
103
  minimum=256,
@@ -147,4 +159,4 @@ with gr.Blocks(css=css) as demo:
147
  outputs = [result, seed]
148
  )
149
 
150
- demo.launch(ssr_mode=False)
 
6
  from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler, AutoencoderTiny, AutoencoderKL
7
  from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5TokenizerFast
8
  from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images
9
+ from gradio_imageslider import ImageSlider
10
 
11
  dtype = torch.bfloat16
12
  #model_id = "black-forest-labs/FLUX.1-dev"
 
24
 
25
  pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)
26
 
27
+ @spaces.GPU(duration=90)
28
  def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=3.5, num_inference_steps=28, sigmas=0.95, progress=gr.Progress(track_tqdm=True)):
29
  if randomize_seed:
30
  seed = random.randint(0, MAX_SEED)
31
  generator = torch.Generator().manual_seed(seed)
32
 
33
  #for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
34
+ image_def = pipe(
35
+ prompt=prompt,
36
+ guidance_scale=guidance_scale,
37
+ num_inference_steps=num_inference_steps,
38
+ width=width,
39
+ height=height,
40
+ generator=generator,
41
+ output_type="pil",
42
+ ).images[0]
43
+ # yield img, seed
44
+ image_sigmas = pipe(
45
  prompt=prompt,
46
  guidance_scale=guidance_scale,
47
  num_inference_steps=num_inference_steps,
 
50
  generator=generator,
51
  output_type="pil",
52
  mul_sigmas=sigmas
53
+ ).images[0]
54
+ return [image_def, image_sigmas], seed
55
 
56
  examples = [
57
  "a tiny astronaut hatching from an egg on the moon",
 
86
 
87
  run_button = gr.Button("Run", scale=0)
88
 
89
+ #result = gr.Image(label="Result", show_label=False)
90
+ result = ImageSlider(label="Result", show_label=False, type="pil", slider_color="pink")
91
 
92
  with gr.Accordion("Advanced Settings", open=True):
93
  sigmas = gr.Slider(
 
109
  randomize_seed = gr.Checkbox(label="Randomize seed", value=False)
110
 
111
  with gr.Row():
112
+
113
  width = gr.Slider(
114
  label="Width",
115
  minimum=256,
 
159
  outputs = [result, seed]
160
  )
161
 
162
+ demo.launch()
requirements.txt CHANGED
@@ -4,4 +4,5 @@ git+https://github.com/huggingface/diffusers.git@6b1c4a766b7f83fe06ddb9bbb58c112
4
  torch
5
  transformers==4.42.4
6
  xformers
7
- sentencepiece
 
 
4
  torch
5
  transformers==4.42.4
6
  xformers
7
+ sentencepiece
8
+ gradio_imageslider